Computer Science
D2L 6.6 LeNet
·1271 words
D2L
Computer Science
Docs
D2L 6.5 Pooling Layer
·911 words
D2L
Computer Science
Docs
D2L 6.4 Multiple Input & Output
·619 words
D2L
Computer Science
Docs
D2L 6.3 Padding & Stride
·500 words
D2L
Computer Science
Docs
D2L 6.2 Image Convolution
·1357 words
D2L
Computer Science
Docs
D2L 5.4 Custom Layer
·353 words
D2L
Computer Science
Docs
D2L 5.3 Deferred Initialization
·411 words
D2L
Computer Science
Docs
D2L 5.2 Parameter Management
·992 words
D2L
Computer Science
Docs
D2 5.1 Layer & Block
·861 words
D2L
Computer Science
Docs
D2L 4.2 Example of MLP
·532 words
D2L
Computer Science
Docs
D2L 4.1 Multilayer Perceptron
·2588 words
D2L
Computer Science
Docs
D2L Weierstrass Approximation Theorem
·915 words
D2L
Computer Science
Docs
Linear Regression
·1948 words
D2L
Computer Science
Docs
D2L 4.4 Model Selection, Underfitting, and Overfitting
·2313 words
D2L
Computer Science
Docs
D2L 4.1 MultilayerPerceptron
·1476 words
D2L
Computer Science
Docs
D2L 3.6 Implementation of softmax regression from scratch
·2032 words
D2L
Computer Science
Docs
D2L 3.5 Image classification datasets
·1074 words
D2L
Computer Science
Docs
D2L 3.4 Softmax Regression
·1963 words
D2L
Computer Science
Docs
D2L 3.3 A concise implementation of linear regression
·1286 words
D2L
Computer Science
Docs
D2L 3.2 Object-Oriented Design for Implementation
·568 words
D2L
Computer Science
Docs
D2L 3.1 Linear Regression
·2946 words
D2L
Computer Science
Docs
Dive Into Deep Learning
·24 words
D2L
Computer Science
Cover