← Back to Index
Research & Engineering Archive

IE 2. Operational Amplifiers

By Jingnan Huang · October 07, 2025 · 6514 Words

Last Edit: 10/7/25

2.1 The Ideal Op Amp
#

2.1.1 The Op-Amp Terminal
#

image.png

image.png

$$ V_o=A(V_2−V_1) $$

具体原因后面会进一步说明

image.png

image.png

Ideal v.s. Discrete
#

参数 Ideal Op Amp(理想运放) Discrete OpAmp 741(分立型) Modern Integrated(现代集成)
\(A_{v0}\) 10510^5 50 ~ 100
\(R_{in}\) 数兆欧(several MΩ) 数兆欧
\(R_o\) 0 < 100Ω 几欧(several Ω)
BW(带宽) 1.5 MHz 几 GHz
功耗 Power 0 80 mW 5–10 mW
成本 Cost 0 <\(1 \)10^{-5}$

2.2 The Inverting Configuration
#

image.png

$$ v_o = A_{v0} (v_2 - v_1) $$

Virtual Short
#

Op AMP Configuration
#

  1. 输入电流为 0:\(i_+ = i_- = 0\)(因为输入阻抗趋近于无穷)
  2. 输入端电压相等:\(v_+ \approx v_-\)(因为虚短)

1. Non-inverting Op Amp(同相放大器)
#

image.png

Op AMP 负端的 Voltage 是来自 Output 的,因为它左边是 Ground,其 Voltage 是两个 In Series 的 Resistors 的分压的结果

$$ v_i = v_o \cdot \frac{R_1}{R_1 + R_2}\Rightarrow v_o = v_i \left(1 + \frac{R_2}{R_1}\right)\Rightarrow \text{Voltage gain} = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1} $$

2. Inverting Op Amp(反相放大器)
#

image.png

$$ \frac{v_i}{R_1} = \frac{-v_o}{R_2}\Rightarrow v_o = -\frac{R_2}{R_1} v_i\Rightarrow \text{Voltage gain} = \frac{v_o}{v_i} = -\frac{R_2}{R_1} $$

3. Unit-gain Buffer(电压跟随器)
#

image.png

$$ \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1} = 1 + \frac{0}{\infty} = 1\Rightarrow v_o = v_i $$

Buffer
#

$$ {\text{out}} = V_{\text{sig}} \cdot \frac{R_L}{R_{\text{sig}} + R_L} $$

作用 表现
不吃输入信号 输入阻抗极大 \(R_{\text{in}} = \infty\)
能推得动输出 输出阻抗极小 \(R_{\text{out}} \approx 0\)

image.png

$$ V_x = V_{\text{sig}} \cdot \frac{\infty}{R_{\text{sig}} + \infty} = V_{\text{sig}} $$

$$ V_{\text{out}} = V_o \cdot \frac{R_L}{R_{\text{out}} + R_L} \approx V_o $$

image.png

不知道这张图在干什么

Review of Impedance
#

Resistor 电阻
#

Impedance 阻抗
#

对象 符号 是否随频率变 组成 单位
Resistor 电阻 R 不变 纯电阻 欧姆
Impedance 阻抗 Z 会变 电阻 + 电抗 欧姆

Capacitor 电容
#

$$ Z_C = \frac{1}{j\omega C} $$

Inductor 电感
#

$$ Z_L = j\omega L $$


4. General Inverting Op amp Circuit
#

image.png

$$ \frac{v_o}{v_i} = -\frac{Z_2}{Z_1} $$

Miller Integrator(米勒积分器)
#

$$ Z_2 = \frac{1}{C s}, \quad s = j\omega $$

具体原因和 s 和 Laplace Transform 有关,这边不做提及


Time Domain & Frequency Domain
#



image.png

$$ i = \frac{v_i}{R_1} = C \frac{dv_c}{dt} = C \frac{d(-v_o)}{dt} $$

$$ \frac{dv_o}{dt} = -\frac{1}{R_1 C} v_i $$

$$ v_o = -\frac{1}{R_1 C} \int v_i , dt $$

$$ v_o = -\frac{V_i}{R_1 C} t $$

image.png

Differentiator
#

image.png

$$ \frac{v_o}{v_i} = -\frac{Z_2}{Z_1}=\frac{v_o}{v_i} = -\frac{R_1}{1/(C_1 s)} = -R_1 C_1 s $$

$$ \frac{v_o}{v_i} = -j \omega R_1 C_1 $$

image.png

$$ v_o(t) = -R_1 C_1 \frac{dv_i(t)}{dt} $$

Summing Circuit
#

image.png

$$ i=\frac{v_1}{R_1} + \frac{v_2}{R_2} $$

$$ v_o = - R_F \left( \frac{v_1}{R_1} + \frac{v_2}{R_2} \right) $$

$$ v_o = -\left( \frac{R_F}{R_1} v_1 + \frac{R_F}{R_2} v_2 \right) $$

Difference Amplifier
#

image.png

$$ V^+ = \frac{R_4}{R_3 + R_4} v_2 $$

$$ i_1 = \frac{V^+ - v_1}{R_1} $$

$$ v_o = \frac{R_4}{R_3 + R_4} v_2 + \frac{R_4}{R_3+R_4} \cdot \frac{R_2}{R_1}(v_2 - v_1) $$

$$ v_o = \frac{R_2}{R_1}\left(\frac{R_4}{R_3+R_4}(1+\frac{R_1}{R_2}) v_2 - v_1 \right) $$

$$ \frac{R_4}{R_3} = \frac{R_2}{R_1} $$

image.png

$$ v_o = \left(1 + \frac{R_2}{R_1}\right)\frac{R_4}{R_3+R_4} v_2 - \frac{R_2}{R_1} v_1 $$

$$ \frac{R_4}{R_3} = \frac{R_2}{R_1} $$

$$ v_o = \frac{R_2}{R_1}(v_2 - v_1) $$

Input Resistance Bin
#

电路类型 (Circuit Type) 输入电阻公式 (Input Resistance R_{in}) 原因 (Reason)
反相运放 (Inverting Op Amp) \(R_{in} = R_1\) 输入电压先经过电阻 \(R_1\),再到虚短点
同相运放 (Non-inverting Op Amp) \(R_{in} = \infty\) 输入端直接接到 + 端,理想运放输入电流≈0
分压输入 (Voltage Divider Input) \(R_{in} = R_3 + R_4\) 输入电压先通过 \(R_3, R_4\) 串联分压
差分放大器 (Difference Amplifier) \(R_{in} = R_1 + R_3\) 两个电阻 \(R_1, R_3\) 串联到虚短点

Cascading Op amp circuit
#

image.png

Instrumentation Amplifier (an improved difference amplifier)
#

image.png

$$ v_{in} = \frac{v_{id}}{2R_1}(2R_1 + 2R_2) = v_{id}\left(1 + \frac{R_2}{R_1}\right) $$

$$ v_o = \frac{R_4}{R_3} v_{in} $$

$$ v_o = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1}\right) v_{id} $$

DC Imperfections
#

DC offsets
#

image.png

image.png

image.png

Effect of \(V_{OS}\) on Amplifier
#

Non-Inverting conf.
#

image.png

$$ V_{out} = \left(1 + \frac{R_2}{R_1}\right)(V_{in} + V_{OS}) $$

Inverting conf.
#

image.png

image.png

$$ V_{out} = V_{out}’ + V_{out}’’ = -\frac{R_2}{R_1} V_{in} + \left(1 + \frac{R_2}{R_1} \right) V_{OS} $$

Use Capacitor to Remedy the offset
#

image.png

image.png

Capacitor 的特性 \(i_C = C\cdot \frac{dV}{dt}\),只有 Voltage Change 的时候才会有 Current

Miller Integrator
#

image.png

$$ V_{\text{out}} = V_{\text{OS}} + \frac{1}{C_1} \int \frac{V_{\text{in}}}{R_1} dt $$

image.png

Capacitor 令 DC 无法经过,这导致在一端形成了一个永久的 Voltage Source,持续输出

image.png

$$ \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{1}{R_1 C_1 j\omega} $$

image.png

$$ \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_2 / R_1}{1 + R_2 C_1 j\omega} $$

image.png

$$ |H(j\omega)| = \frac{R_2 / R_1}{\sqrt{1 + (\omega R_2 C_1)^2}} $$

$$ |H(j\omega)| \to \frac{R_2}{R_1} $$

$$ |H(j\omega)| \to \frac{R_2 / R_1}{\omega R_2 C_1} = \frac{1}{R_1 C_1 \omega} $$

Time Domain
#

image.png

Miller Integrator
#

image.png

Integrator with R2
#

Input Bias Current
#

image.png

image.png

Superposition
#

\(I_{B1}\)

image.png

\(I_{B2}\)
#

image.png

$$ V_{out} = V_{out}’ + V_{out}’’ = R_2 (I_{B1} - I_{B2}) $$

Biased Current in Miller Integrator
#

image.png

加一个并联电阻 \(R_2\)(跟前面分析一致)

Large-Signal Limitations of Op-amp
#

The Op-amp has some Limitation under large signals, those are basically

  1. Saturation voltage and current
  2. Slew Rate

Output voltage saturation
#

image.png

image.png

image.png

Ex. Output Saturation
#

We have a 1 v peak to peak sin function input, with \(R_1=1k\), \(R_2 = 19k\), aksing for the output


image.png

Output Current Limit
#

image.png

Slew Rate
#

Slew Rate describe the rate of change of the output signal, its being defined as

$$ SR = \left( \frac{dV_o(t)}{dt} \right)_{max} $$

image.png

image.png

Ex. Distortion in op amp
#

image.png

Giving a Buffer, with

$$ \omega_t = 2\pi \times 10^6 \text{ rad/s} \quad\text{(unity-gain frequency)} $$

$$ SR = ±10^6 , \text{V/s} $$

Find the largest step input, (\(V_i\)), without SR limiting


image.png

Full-power bandwidth
#

\(fm\) is the largest frequency of waveform an op-amp can have under largest Output Voltage without Slew Rate Limiting

We know that a sin wave form can be expressed as

$$ v_o(t) = V_{o(max)} \sin(2\pi f_M t) $$

$$ \left|\frac{dv_o(t)}{dt}\right|{max}= 2\pi f_M V{o(max)} $$

$$ SR = 2\pi f_M V_{o(max)} $$

$$ f_M = \frac{SR}{2\pi V_{o(max)}} $$

Ex. Full-power bandwidth for 741 op am
#

With \(V_{o(max)} = 10,V, \quad SR = 10^6,V/s\)


$$ f_M = \frac{10^6}{2\pi \times 10} = 15.9\text{kHz} $$

Slew Rate v.s. Amplitude
#

From the formula \(SR = 2\pi f V_{o(peak)}\) we can see that \(SR\) is Proportional to the frequency \(f\) and \(V_{0(peak)}\)