← Back to Index
Research & Engineering Archive

IMP 1. Review of Vector

By Jingnan Huang · September 07, 2025 · 2209 Words

IMP1.ReviewofVector
#

Last Edit: 9/7/25

Scalar & Pseudoscalars
#

Scalar 标量
#

一个 Scalar 是在任意坐标变换(包括旋转、反射、平移)下保持不变的数量

常见例子:
#

标量(Scalar) 单位 意义说明
质量(mass) kg 不管从哪个方向看,质量就是那么多
温度(temperature) °C, K 没有方向性,就是个数值
时间(time) s 没有方向,只是过去多少秒
电压(voltage) V 某点电势差(可以是正负,但不是方向)
能量(energy) J 总能量多少,不依赖空间方向

Scalar field 标量场
#

Pseudoscalars 伪标量
#

Position Vectors & Vector Fields
#

Pseudovector 伪向量
#

Vector field 向量场
#

image.png

Orthonormal Basis Vectors & Dot Product
#

Orthonormal Basis Vectors 正交归一向量
#

Dot Product 点积
#

Cross Product 叉积
#

Planes & Lines
#

Line in Space
#

Plane Equation
#

Curved Surface
#

Equation of a Plane Given Three Points
#

e.x.
#

$$ \vec{n} = \vec{OQ} \times \vec{OR}= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \ -1 & 5 & -3 \ -2 & 0 & 2 \end{vmatrix} = \langle 10,8,10\rangle $$

Equation of a Plane Given That 2 Lines Intersect
#

$$ Line ~1: x = t,\ y = 2t + 1,\ z = 3t + 4 $$

$$ Line~2:x = 2s - 2,\ y = 2s - 1,\ z = 3s + 1 $$

Equation of a Line Formed by the Intersection of Two Planes
#

Introduction to Multivariable Functions
#

含义:把等式写成 F = 0 的形式,其中 F(函数)同时包含 x、y、z,未把 z 单独解出

$$ sin(xyz) − zx + yx = F(x, y, z) = 0 $$

Domain and Range of Function
#

domain range
\({(x,y);; x^{2}+y^{2}\le 4,\ (x,y)\in\mathbb{R}^{2}}\) \(0 \le z \le 2,\ z \in \mathbb{R}\)

Graphing 2-Variable Scalar Functions (Traces)
#

image.png

image.png

Graphing 2-Variable Scalar Functions (Cylinders)
#

$$ { (x,y) ;|; x^2 + 4y^2 = 16, ; -4 \leq x \leq 4, ; -2 \leq y \leq 2, ; x,y \in \mathbb{R} } $$

$$ z \in \mathbb{R} $$

image.png

Graphing 2-Variable Scalar Functions (Level Curves)
#

image.png

image.png

Graphing Scalar 3-Variable Functions (Level Surfaces)
#

$$ w = f(x,y,z), \quad w = \text{constant} = f(x,y,z) $$

image.png