← Back to Index
Research & Engineering Archive

AEM 2. Differential Equations

By Jingnan Huang · October 06, 2025 · 6442 Words

Last Edit: 10/6/25

Ordinary Differential Equations 常微分方程
#

$$ \frac{d^2 y}{dx^2} = -k^2 y $$

Classifying DE’s
#

Order of a DE
#

General form of DE
#

$$ F(x, y, y’, y’’, …, y^{(n)}) = 0 $$

Linear and Non-linear ODEs
#

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_0(x)y = f(x) $$

Homogeneous and Non-homogeneous Linear ODE
#

Constant vs Variable Coefficient
#

Autonomous ODE
#

Ex. Autonomous ODE
#

$$ \frac{dP}{dt} = (\beta - \alpha)P $$

General Form
#

$$ y^{(n)} = F(y^{(n-1)}, y^{(n-2)}, …, y’, y) $$

Ex. Identify the ODEs
#

$$ y’’ + 3(y’)^2 + \cos x = 0 $$

这里是 \(y’\) 的平方


$$ 5\sin\left(\frac{dy}{dt}\right) + \tan^2 y = 1 $$


$$ \frac{d^2 y}{dx^2} + x^2 \frac{dy}{dx} + (\sin x) y = e^x $$


$$ x y’’ + 4x^2 y’ - \frac{2}{1 + x^2} y = 0 $$


$$ y’’ + \sin(y’) + x y = x^2 $$


Solution of ODE
#

$$ y^{(n)} = F(y^{(n-1)}, …, y’, y, x) $$

$$ \varphi^{(n)} \equiv F\left(\varphi^{(n-1)}, …, \varphi’, \varphi, x\right) $$

Ex. Verifying Solution
#

For DE \(y’ = 6x(y - 1)^{2/3}\),verify by substitution that is a solution on interval \((-\infty, +\infty)\),where C is an arbitrary constant

$$ y’ = 2x \cdot 3(x^2 + C)^2 = 6x(x^2 + C)^2 $$

$$ y - 1 = (x^2 + C)^3 \Rightarrow (y - 1)^{2/3} = [(x^2 + C)^3]^{2/3} = (x^2 + C)^2 $$

$$ 6x(y - 1)^{2/3} = 6x(x^2 + C)^2 $$

Existence of Solutions, General, Particular and Singular
#

How to solve first-order ODE
#

Separable First-order ODE
#

$$ \int \frac{1}{h(y)} dy = \int g(x) dx $$

Integrating Factor Method
#

$$ \mu(x) = e^{\int P(x),dx} $$

$$ \mu(x) \cdot y’ + \mu(x) \cdot P(x) \cdot y = \mu(x) \cdot f(x) $$

$$ \frac{d}{dx}[\mu(x) \cdot y] = \mu(x) \cdot f(x) $$

$$ \int \frac{d}{dx}[\mu(x) \cdot y], dx = \int \mu(x) \cdot f(x) , dx $$

$$ \mu(x) \cdot y = \int \mu(x) \cdot f(x), dx + C $$

$$ y(x) = \frac{1}{\mu(x)} \left[ \int \mu(x) \cdot f(x) , dx + C \right] $$

Ex.
#

$$ xy’ - y = 2x^2 \quad \text{with} \quad y(x_0) = y_0 $$

  1. 计算积分因子(Integrating Factor):

    $$ \mu(x) = e^{\int -\frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x} $$

  2. 两边乘以积分因子:

    $$ \frac{d}{dx} \left( \frac{1}{x} y \right) = 2 $$

  3. 积分并解出 y:

    $$ \frac{1}{x} y = \int 2 dx + C = 2x + C \quad \Rightarrow \quad y = x(2x + C) = 2x^2 + Cx $$

  4. 若 IC 为 \(y(1) = 1\):

    • 解代入得:

    $$ 1 = 2(1)^2 + C(1) \Rightarrow C = -1 $$

  5. 若 IC 为 y(1) = 0

    • 解代入得:

    $$ 0 = 2 + C \Rightarrow C = -2 $$

  6. 若 IC 为 \(y’(1) = 2, y(1) = 2\)

$$ y = 2x^2 + Cx \Rightarrow y’ = 4x + C $$

$$ y(1) = 2 + (-2) = 0 \ne 2 $$

Existence and Uniqueness of Solutions for Linear 1st Order IVPs
#

Existence of a Unique Solution for First-Order IVPs
#

给到一个 1st Order Differential Equation,并给了某个点 \((x_0, y_0)\) 的初始条件 去研究解到底存不存在?如果存在,是不是唯一的?

image.png

这种情况下,只保证在 \(x_0\) 附近一个小区间 \(I_0\) 内,存在唯一解

Existence of a Unique Solution for First-Order Linear IVPs
#

多了一个 Linear 的条件

解不仅唯一,而且在整个区间 I 上都成立

Why Linear Follow From Non-Linear
#

$$ y’ + P(x)y = f(x) $$

$$ y’ = f(x) - P(x)y = \hat{f}(x,y) $$

Ex. Applying Non-Linear Case
#

“What is the interval R in this example?”

$$ y’ = 3y^{2/3}, \quad y(2)=0 $$

$$ \frac{\partial f}{\partial y} = 2y^{-1/3} = \frac{2}{y^{1/3}} $$

So, are we guaranteed to have a unique solution?

Theorem 1.2.1 does not guarantee that. But we don’t know if the solution is unique or not.

定理 1.2.1 不能保证。但是我们也不能直接下结论说解一定不唯一,只是“没有保证”。

Solution Curves without Solutions: Direction Field
#

$$ y’ = f(x,y), $$

Autonomous DE and its Critical Points
#

👉 换句话说:方程的变化只依赖于 y,不依赖于 x

Critical Point
#

也就是导数 \(y’=0\) 的点

Ex. Critical Point of a Function
#

$$ x’ = x(4-x) $$

image.png

Stability of Critical Points
#

Stable Point
#

image.png

Unstable Point
#

image.png

Semi-Stable Point
#

image.png


General Linear ODE’s and Linear Differential Operator
#

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y’ + a_0(x)y = g(x) $$

Linear Differential Operator L
#

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y’ + a_0(x)y = g(x) $$

$$ Ly = g(x) $$

$$ L = a_n(x) \frac{d^n}{dx^n} + a_{n-1}(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + a_1(x) \frac{d}{dx} + a_0(x) $$

image.png

Ex1. Find Linear Differential Operator L
#

$$ 3\ddot{y} - 4 \dot{y} + 2xy = e^{x} \Rightarrow L = 3 \frac{d^2}{dx^2} - 4 \frac{d}{dx} + 2x $$

Ex2. Find Linear Differential Operator L
#

$$ y’’ + x \sin(y’) - xy = x^2 $$

Existence and Uniqueness of nth order Linear ODE
#

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y’ + a_0(x)y = g(x) $$

$$ y(x_0) = y_0,\quad y’(x_0) = y_1,\quad \cdots,\quad y^{(n-1)}(x_0) = y_{n-1} $$

Theorem: Existence of a Unique Solution
#

$$ a_n(x)y^{(n)} + \cdots + a_0(x)y = g(x), \quad y(x_0) = y_0, \quad y’(x_0) = y_1, \quad \cdots, \quad y^{(n-1)}(x_0) = y_{n-1} $$

这里的 \(a_n(x)\) 指的是最高项的那个 Coefficient

Ex1. Existence of a Unique Solution
#

$$ y^{(3)} + 3y’’ + 4y’ + 12y = 0 $$

$$ y(1) = y’(1) = y’’(1) = 0 $$

Ex2. Existence of a Unique Solution
#

$$ (1 - t^2)y’’ - 2ty’ + 2y = 0 $$

$$ y(0) = 1,\quad y’(0) = 2 $$


Homogenous Linear DE’s: General Solutions
#

Theorem: General Solutions for Homogeneous Linear DEs
#

$$ L(y) = 0 $$

$$ y_1(x), y_2(x), …, y_n(x) $$

$$ L(\alpha y_1 + \beta y_2) = \alpha L(y_1) + \beta L(y_2) $$

$$ c_1 y_1 + c_2 y_2 + \cdots + c_n y_n $$

Definition: Linearly Independence of Functions
#

$$ c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0 $$

Ex1. Finding the Linear Independency of function
#

Are functions \({1 - 3x + 2x², 1 - x + x², 1 + x}\) linearly independent?


image.png

Ex2. Finding the Linear Independency of function
#

Are functions \({e^x, xe^x, x²e^x}\) linearly independent?\


image.png

How to check if n functions are independent?
#

$$ \sum_{k=1}^{n} c_k y_k $$

Case in non Polynomial
#

The Wronskian
#

The beauty of Math (or how seemingly unrelated mathematical topics connect to each other)
#

$$ \left{ e^{m_1 x}, e^{m_2 x} \right}, \quad m_1, m_2 \in \mathbb{C} $$

$$ C_1 e^{m_1 x} + C_2 e^{m_2 x} = 0, \quad \forall x \in \mathbb{R} \tag{I} $$

$$ C_1 m_1 e^{m_1 x} + C_2 m_2 e^{m_2 x} = 0, \quad \forall x \in \mathbb{R} $$

$$ \begin{bmatrix} e^{m_1 x} & e^{m_2 x} \ m_1 e^{m_1 x} & m_2 e^{m_2 x} \end{bmatrix} \begin{bmatrix} C_1 \ C_2 \end{bmatrix}
#

\begin{bmatrix} 0 \ 0 \end{bmatrix} \tag{II} $$

$$ A(x)\vec{C} = \vec{0}, \quad \forall x \in \mathbb{R} $$

$$ \vec{C} = A(x_0)^{-1} \vec{0} = \vec{0} $$

$$ W(f_1, f_2) = \begin{vmatrix} e^{m_1 x} & e^{m_2 x} \ m_1 e^{m_1 x} & m_2 e^{m_2 x} \end{vmatrix} = e^{(m_1 + m_2)x}(m_2 - m_1) $$

Case when W = 0 for all x in I
#

$$ W \not\equiv 0 \quad \Longrightarrow \quad \text{线性无关} $$

$$ W \equiv 0 \quad NOT\Rightarrow \quad \text{线性相关} $$

Ex. Case when W = 0 for all x in I
#

$$ f_1(x) = \begin{cases} x^2, & x \geq 0 \ 0, & x < 0 \end{cases}, \quad f_2(x) = \begin{cases} 0, & x \geq 0 \ x^2, & x < 0 \end{cases} $$

Special Case of Wronskian
#

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y’ + a_0(x)y = 0 $$

$$ W(y_1, y_2, \dots, y_n)(x) \neq 0, \quad \forall x \in I $$

Ex. Determine Fundamental Set of Solution
#

Is the set \({e^x,e^{-x},\cosh x}\) the Fundamental Set Solution of \(y-y’’’=0\) ?


image.png

Find the Second Solution for a 2nd Degree Linear Homo ODE
#

Assume that we already know that \(y_1(x)\) is a solution for this ODE, and consider the ODE

$$ y’’+P(x)y’+Q(x)y=0 $$

$$ y_2(x)=U(x)y_1(x) $$

$$ y_2’ = U’ y_1 + U y_1’ $$

$$ y_2’’ = U’’ y_1 + 2U’ y_1’ + U y_1’’ $$

$$ (U y_1)’’ + P(U y_1)’ + Q(U y_1) = 0 $$

Substitution is \(y_2= Uy_1\), since \(y_2\) is also a solution, so it can be sub in the function

$$ (Uy_1)’’ = U’‘y_1 + 2U’y_1’ + Uy_1’’ $$

$$ (Uy_1)’ = U’y_1 + Uy_1’ $$

$$ (U’‘y_1 + 2U’y_1’ + Uy_1’’) + P(U’y_1 + Uy_1’) + Q(Uy_1) = 0 $$

$$ y_1U’’+(2y_1’ + P y_1)U’+(y_1’’ + P y_1’ + Q y_1)U = 0\tag{1} $$

$$ U y_1’’ + (2 y_1’ + P y_1) U’ + y_1 U’’ = 0 $$

$$ y_1 w’ + (2 y_1’ + P y_1) w = 0 $$

$$ w’ + \left( 2\frac{y_1’}{y_1} + P \right) w = 0 $$

$$ \frac{w’}{w} + 2\frac{y_1’}{y_1} + P = 0\Rightarrow \frac{w’}{w} + 2\frac{y_1’}{y_1} = -P $$

$$ \frac{d}{dx}(\ln(w y_1^2)) = -P $$

$$ \ln(w y_1^2) = -\int P(x),dx $$

$$ w y_1^2 = e^{-\int P(x),dx}\Rightarrow w = \frac{1}{y_1^2} e^{-\int P(x),dx} $$

$$ U’ = \frac{1}{y_1^2} e^{-\int P(x),dx} $$

$$ U = \int \frac{1}{y_1^2} e^{-\int P(x),dx},dx $$

$$ y_2(x) = y_1(x) \int \frac{e^{-\int P(x),dx}}{y_1(x)^2},dx $$

Ex. Find the second Solution for 2nd Linear Homo ODE
#

The function is \(y’’+4y’+4y=0\), \(y_1(x) = e^{-2x}\)


image.png

Find the fundamental set of solutions for Higher Order Homo Linear DE
#

Consider the function

$$ a y’’’ + b y’’ + c y’ + d y = 0\quad a,b,c,d \in \mathbb{R} $$

$$ y’ = m e^{mx}, \quad y’’ = m^2 e^{mx}, \quad y’’’ = m^3 e^{mx} $$

$$ a m^3 e^{mx} + b m^2 e^{mx} + c m e^{mx} + d e^{mx} = 0 $$

$$ a m^3 + b m^2 + c m + d = 0 $$

$$ a (m - m_1)(m - m_2)(m - m_3) = 0 $$

$$ {e^{m_1 x}, e^{m_2 x}, e^{m_3 x}} $$

Types of roots (solution for DE)
#

In above part, we conclude the fundamental solution set of DE, but there may exist multiple situations for those roots (i.e. May have complex roots)

$$ a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y’ + a_0 y = 0 $$

$$ a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 = 0 $$

Type 1:Distinct Real Roots
#

The most simple case, when all three are Distinct Real Roots

$$ y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x} $$

Type 2:Conjugate Complex Roots
#

As Complex Roots need to appear with its Conjugate, thus have

$$ m_{1,2} = \alpha \pm i\beta $$

$$ e^{\alpha x} \cos(\beta x), \quad e^{\alpha x} \sin(\beta x) $$

$$ y = e^{\alpha x}(c_1 \cos\beta x + c_2 \sin\beta x) $$

Prove that a Complex Number Solution’s Conjugate is also a Solution We have the first Complex Number as \(A_n m_1^n + A_{n-1} m_1^{n-1} + \cdots + A_1 m_1 + A_0 = 0\), take Conjugate on both side to get \(\overline{A_n} , \overline{m_1}^n + \overline{A_{n-1}} , \overline{m_1}^{,n-1} + \cdots + \overline{A_1} , \overline{m_1} + \overline{A_0} = 0\), thus also a solution

Type 3:Repeated Real Roots
#

If one Real Root has repeated r times \(m_1 = m_2 = \dots = m_r = m\), then the solution is

$$ e^{mx},x e^{mx}, x^2 e^{mx}, \dots, x^{r-1} e^{mx} $$

Ex. Specify the general class of solution of function
#

Having the function

$$ y^{(6)} - 8y^{(5)} + 23y^{(4)} - 26y^{(3)} - 2y’’ + 32y’ - 24y = 0 $$


$$ (m + 1)(m - 3)(m - 2)^2 (m - (1 + i))(m - (1 - i)) = 0 $$

Root Type Solution
( m = -1 ) Real ( \(e^{-x}\) )
( m = 3 ) Real ( \(e^{3x}\) )
( m = 2 )(重根) Repeated Real ( \(e^{2x},\ x e^{2x}\) )
( m = 1 \pm i ) Conjugate Complex ( \(e^{x}\cos x,\ e^{x}\sin x\)

$$ { e^{-x},\ e^{3x},\ e^{2x},\ x e^{2x},\ e^{x}\cos x,\ e^{x}\sin x } $$

$$ y_c(x) = C_1 e^{-x} + C_2 e^{3x} + C_3 e^{2x} + C_4 x e^{2x} + C_5 e^{x}\cos x + C_6 e^{x}\sin x $$

Ex. Can the auxiliary equation have repeated complex roots?
#

If we have the Characteristic Function as

$$ (m - (1+i))^2 (m - (1-i))^2 = 0 $$

$$ e^{x}\cos x,\ e^{x}\sin x,\ x e^{x}\cos x,\ x e^{x}\sin x $$

General Solution of Non-homo Linear DE
#

Now we are copping with the Non-Homo Case, where there’s non zero on the RHS, so with the function

$$ a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g(x) $$

$$ L(y_p) = g(x) $$

$$ L(y_c) = 0 $$

Proving the General Solution is Comp + Part
#

So we are trying to prove that \(y = y_c + y_p\)

$$ L(y) = L(y_c + y_p) $$

$$ L(y) = L(y_c) + L(y_p) $$

$$ L(y) = 0 + g(x) = g(x) $$

$$ y - y_p $$

$$ L(y - y_p) = L(y) - L(y_p) = g(x) - g(x) = 0 $$

Ex. Finding the General Solution
#

Having the function \(y’’ - 3y’ + 2y = e^{x}\)


image.png

Variation of Parameters
#

Finding the Particular Solution of the DE is hard, and this method can help

$$ y’’ + P(x)y’ + Q(x)y = f(x) $$

$$ y_c = C_1 y_1 + C_2 y_2 $$

$$ y_p = U_1(x) y_1 + U_2(x) y_2 $$

$$ y_p’ = U_1’y_1 + U_1y_1’ + U_2’y_2 + U_2y_2’ $$

$$ U_1’ y_1 + U_2’ y_2 = 0 \quad \text{(Eq.1)}\Rightarrow y_p’ =U_1y’_1+U_2y’_2 $$

This helps when calculating \(y’’\)

$$ y_p’’ = U_1’y_1’ + U_1y_1’’ + U_2’y_2’ + U_2y_2’’ $$

$$ (U_1’y_1’ + U_1y_1’’ + U_2’y_2’ + U_2y_2’’)+P(U_1y_1’ + U_2y_2’)+Q(U_1y_1 + U_2y_2)= f(x) $$

$$ (U_1’y_1’ + U_2’y_2’) + U_1(y_1’’ + Py_1’ + Qy_1) + U_2(y_2’’ + Py_2’ + Qy_2) = f(x) $$

$$ y_1’’ + Py_1’ + Qy_1 = 0, \quad y_2’’ + Py_2’ + Qy_2 = 0 $$

$$ U_1’y_1’ + U_2’y_2’ = f(x) $$

$$ \begin{cases} U_1’y_1 + U_2’y_2 = 0 & (\text{Eq.1}) \ U_1’y_1’ + U_2’y_2’ = f(x) & (\text{Eq.2}) \end{cases} $$

$$

\begin{bmatrix} y_1 & y_2 \ y_1’ & y_2’ \end{bmatrix} \begin{bmatrix} U_1’ \ U_2’ \end{bmatrix}

\begin{bmatrix} 0 \ f(x) \end{bmatrix}

$$

$$ W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \ y_1’ & y_2’ \end{vmatrix} $$

$$ U_1’ = -\frac{y_2 f}{W(y_1, y_2)}, \quad U_2’ = \frac{y_1 f}{W(y_1, y_2)} $$

$$ U_1 = \int -\frac{y_2 f}{W(y_1, y_2)},dx, \quad U_2 = \int \frac{y_1 f}{W(y_1, y_2)},dx $$

Ex. Finding the Particular Solution
#

We have the function \(y’’ - 2y’ + y = \frac{e^t}{1+t^2}\)


image.png


5.1