← Back to Index
Research & Engineering Archive

AEM 1. Complex Numbers

By Jingnan Huang · September 15, 2025 · 4808 Words

AEM1.ComplexNumbers
#

Last Edit:9/15/25

Complex Numbers
#

$$ \mathbb C={z|z=a+bi,a,b\in\mathbb R } $$

$$ z=r(\cos \theta+i\sin\theta) $$

image.png

Arithmetic Operations
#

Addition
#

$$ z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) $$

Subtraction
#

$$ z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2) $$

Multiplication
#

$$ z_1 z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) $$

Division
#

$$ \frac1z= \frac{1}{a+bi}=\frac{1}{a+bi}\times\frac{a-bi}{a-bi}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}-i\cdot\frac{b}{a^2+b^2} $$

Conjugate
#

$$ \overline Z = Re(z)-iIm(z) $$

$$ \frac{1}{z} = \frac{1}{z} \times \frac{\overline{z}}{\overline{z}}= \frac{\overline{z}}{z \overline{z}}= \frac{\overline{z}}{|z|^2} $$

$$ \overline{z} |= \sqrt{(\operatorname{Re}(z))^2 + (-\operatorname{Im}(z))^2}= |z| $$

$$ \left| \frac{1}{z} \right|= \left| \frac{\overline{z}}{|z|^2} \right|= \frac{1}{|z|^2} |\overline{z}|= \frac{1}{|z|^2} |z|= \frac{1}{|z|} $$

$$ z\overline{z} = (\operatorname{Re}(z) + \operatorname{Im}(z) i)(\operatorname{Re}(z) - \operatorname{Im}(z) i) = (\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2 = |z|^2 $$

$$ \frac{z + \overline{z}}{2} = \operatorname{Re}(z) $$

$$ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} $$

$$ \overline{z_1 z_2} = \overline{z_1} , \overline{z_2} $$

$$ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} $$

Polar Form
#

$$ \overline{Z} = r(\cos\theta - i \sin\theta) = r(\cos(-\theta) + i\sin(-\theta)) $$

$$ \frac{1}{Z} = \frac{1}{|Z|^2} , \overline{Z} = \frac{1}{r^2} , r(\cos(-\theta) + i \sin(-\theta)) = \frac{1}{r} \left( \cos(-\theta) + i \sin(-\theta) \right) $$

Geometric Interpretation
#

image.png

Multiplication by i
#

image.png

$$ Z_1 Z_2 = r_1 \bigl( \cos\theta_1 + i \sin\theta_1 \bigr) \times r_2 \bigl( \cos\theta_2 + i \sin\theta_2 \bigr) \[6pt]= r_1 r_2 \left(    \bigl( \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \bigr)    + i \bigl( \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2 \bigr)  \right) \[6pt]= r_1 r_2 \left( \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right) $$

Argument 辐角
#

$$ z = 2.5\left(-\sin\frac{\pi}{7} + i\cos\frac{\pi}{7}\right) $$

image.png

Principle Argument
#

$$ -\pi < \arg(z) \leq \pi $$

Ex.
#

image.png

Complex Exponential
#

$$ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} $$

Properties
#

Property #1
#

$$ e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}, \quad \forall z_1, z_2 \in \mathbb{C} $$

Property #2
#

$$ e^0 = 1 $$

Property #3
#

$$ e^{-z} = \frac{1}{e^z}, \quad \forall z \in \mathbb{C} $$

Property #4
#

$$ (e^z)^k = e^{kz}, \quad \forall z \in \mathbb{C}, ; k \in \mathbb{Z} $$

Euler’s Formula
#

$$ e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} $$

$$ e^{i\theta} = \cos\theta + i\sin\theta $$

Geometric meaning
#

Properties
#

Polar Representation
#

$$ Z = r(\cos\theta + i\sin\theta) $$

Exponential Representation
#

$$ Z = re^{i\theta}= re^{i(\theta + 2k\pi)}, \quad \forall k \in \mathbb{Z} $$

Euler’s Identity
#

$$ e^{i\theta} = \cos\theta + i\sin\theta $$

$$ e^{i\pi} = \cos\pi + i\sin\pi $$

$$ e^{i\pi} = -1 + i\cdot 0 = -1 $$

$$ e^{i\pi} + 1 = 0 $$

Euler’s Formula + Rectangular Representation
#

$$ e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2} $$

$$ Z = x + iy, \quad x,y \in \mathbb{R} $$

$$ e^Z = e^{x+iy}= e^x \cdot e^{iy} $$

$$ e^{iy} = \cos y + i\sin y $$

$$ e^{x+iy} = e^x (\cos y + i\sin y) $$

Upshot
#

Modulus
#

$$ |e^Z| = e^x $$

Argument
#

$$ \arg(e^Z) = y + 2k\pi, \quad k \in \mathbb{Z} $$

$$ \arg(Z_1 Z_2) = \arg(Z_1) + \arg(Z_2) $$

Integer Powers of Complex Numbers
#

Multiplication of complex numbers 复数相乘的性质
#

$$ Z_1 Z_2 = r_1 r_2 \big(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)\big) $$

$$ Z_1 = r_1 e^{i\theta_1}, \quad Z_2 = r_2 e^{i\theta_2} $$

$$ Z_1 Z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)} $$

$$ = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)) $$

De Moivre’s Formula(棣莫弗公式)
#

$$ (e^{i\theta})^n = e^{in\theta}, \quad n \in \mathbb{Z} $$

$$ (\cos\theta + i\sin\theta)^n = (e^{i\theta})^n=(e^{i n\theta })=\cos(n\theta) + i\sin(n\theta) $$

Integer powers of complex numbers 复数的整数次幂
#

$$ Z^k = (|Z| e^{i\theta})^k = (|Z|)^k e^{ik\theta} = |Z|^k (\cos(k\theta) + i\sin(k\theta)) $$

Ex.
#

image.png

Roots of Complex Numbers
#

$$ Z^{1/n} = w, \quad \text{if } w^n = Z $$

$$ Z = r_0 e^{i\theta_0}, \quad w = r e^{i\theta} $$

$$ (r e^{i\theta})^n = r^n e^{i n\theta} = r_0 e^{i\theta_0} $$

$$ r^n = r_0 ;;\Rightarrow;; r = (r_0)^{1/n} $$

$$ n\theta = \theta_0 + 2k\pi, \quad k \in \mathbb{Z}\Rightarrow \theta = \frac{\theta_0 + 2k\pi}{n} $$

$$ w = r_0^{1/n} e^{i\frac{\theta_0+2k\pi}{n}}, \quad k \in \mathbb{Z} $$

Geometric Interpretation
#

Roots on a circle
#

$$ |Z|^{1/n} = r_0^{1/n} $$

Even spacing
#

$$ w_k = Z^{1/n} = r_0^{1/n} e^{i\frac{\theta_0+2k\pi}{n}}, \quad k=0,1,2,\dots,(n-1) $$

Ex. 求 \(\sqrt{i}\)
#

$$ w = e^{i(\pi/2 + 2k\pi)/2}, \quad k=0,1\Rightarrow w_1 = e^{i\pi/4}, \quad w_2 = e^{i(5\pi/4)} $$

image.png

Complex Logarithm
#

两个分别是 Rectangular Form 和 Polar Form

$$ e^{w(x,y)} = e^{U(x,y) + iV(x,y)} = e^{U(x,y)} \cdot e^{iV(x,y)} $$

$$ e^{U(x,y)} = r \Rightarrow U(x,y) = \log_e r = \log_e |Z| $$

$$ \ln(Z) = \log_e |Z| + i(\theta + 2\pi k),\quad k \in \mathbb{Z} $$

上面的意思就是,给定一个 \(Z\in \mathbb C\),\(\ln(Z)\) 存在无数个 Periodic Solutions

image.png

ln is a Multi-Valued Function
#

$$ \ln(Z)=\log_e|Z|+i\arg(Z) $$

$$ Ln(Z)=\log_e|Z|+iArg(Z) $$

Properties of \(e^z\) and \(ln(z)\)
#

  1. \(|e^z| = e^x\),模长等于实部的指数
  2. \(\arg(e^z) = y + 2\pi k,k \in \mathbb{Z}\),幅角来自虚部

$$ \ln(z) = { w \mid e^w = z } $$

  1. \(e^{\ln(z)} = z\),只要 \(z \neq 0\)
  2. 如果 \(w_1 \in \ln(z_1), w_2 \in \ln(z_2)\),那么 \(w_1 + w_2 \in \ln(z_1 z_2)\)

只在复数对数的多值定义下成立,不适用于 Principal value

$$ \ln(z_1) + \ln(z_2) = \ln(z_1 z_2) $$

$$ \ln\left(\frac{1}{z}\right) = -\ln(z), \quad\ln\left(\frac{z_1}{z_2}\right) = \ln(z_1) - \ln(z_2) $$

Ex. 1 ln(3)
#

$$ \ln(3) = \log_e |3| + i\arg(3) = \log_e 3 $$

Ex. 2 ln⁡(−3)
#

$$ \ln(-3) = \log_e |-3| + i\arg(-3) = \log_e 3 + i\pi $$

求解 e^z = 1 + i
#

$$ Z = \ln(1 + i) = \log_e \sqrt{2} + i\left( \frac{\pi}{4} + 2\pi k \right), \quad k \in \mathbb{Z} $$

image.png

General Complex Power
#

$$ Z^\alpha = e^{\alpha \cdot \ln(Z)} $$

Ex. 1: \(2^\pi\)
#

$$ 2^\pi = e^{\pi \cdot \ln(2)} $$

$$ \ln(2) = \log_e 2 + i \cdot 2\pi k $$

2 的 Arg (Principle Argument) 是 0,但是 arg 不是

$$ \pi \log_e 2 + i \cdot 2\pi^2 k $$

$$ e^{\pi \log_e 2} \cdot e^{i \cdot 2\pi^2 k} = 2^\pi \cdot e^{i \cdot 2\pi^2 k} $$

$$ 2^\pi = 2^\pi \angle 2\pi^2 k $$

Ex. 2: \(i^i\)
#

$$ \ln(i) = \log_e 1 + i \cdot \arg(i) = 0 + i\left( \frac{\pi}{2} + 2\pi k \right) $$

$$ i^i = e^{i \cdot i \cdot \left( \frac{\pi}{2} + 2\pi k \right)} = e^{- \left( \frac{\pi}{2} + 2\pi k \right)} $$

$$ i^i = e^{-\pi/2} \quad \text{(当选择主值 (k = 0) 时)} $$

Jacques Hadamard
#

“The shortest path between two truths in the real domain passes through the complex domain.“ —— 在实数域中,两条真理之间最短的路径,是通过复数域。

$$ \cos A \cos B = \frac{1}{2} \left[ \cos(A+B) + \cos(A-B) \right] $$

$$ \cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i} $$

$$ \begin{align*}\cos A \cdot \cos B &= \left( \frac{e^{iA} + e^{-iA}}{2} \right)   \cdot \left( \frac{e^{iB} + e^{-iB}}{2} \right) \&= \tfrac{1}{4} \left( e^{i(A+B)} + e^{i(A-B)} + e^{-i(A-B)} + e^{-i(A+B)} \right)\end{align*} $$

$$ e^{i(A+B)} + e^{-i(A+B)} = 2\cos(A+B) $$

$$ e^{i(A-B)} + e^{-i(A-B)} = 2\cos(A-B) $$

$$ \cos A \cdot \cos B = \frac{1}{2} \left[ \cos(A+B) + \cos(A-B) \right] $$

Defining Complex Trigonometric Functions
#

$$ e^{i\theta} = \cos\theta + i\sin\theta $$

$$ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i},\quad \cos(z) = \frac{e^{iz} + e^{-iz}}{2} $$

$$ \tan(z) = \frac{\sin(z)}{\cos(z)}, \quad \forall z \in \mathbb{C}, \cos(z) \ne 0 $$

$$ \cot(z) = \frac{\cos(z)}{\sin(z)}, \quad \forall z \in \mathbb{C}, \sin(z) \ne 0 $$

Hyperbolic Sine
#

$$ \sinh(x) = \frac{e^x - e^{-x}}{2}, \quad\cosh(x) = \frac{e^x + e^{-x}}{2} $$

image.png

$$ \sinh(z) = \frac{e^z - e^{-z}}{2}, \quad \forall z \in \mathbb{C} $$

$$ \cosh(z) = \frac{e^z + e^{-z}}{2}, \quad \forall z \in \mathbb{C} $$

Summarize
#

函数名 定义公式
\(\sin(z)\) \(\frac{e^{iz} - e^{-iz}}{2i}\)
\(cos⁡(z)\cos(z)\) \(\frac{e^{iz} + e^{-iz}}{2}\)
\(\tan(z)\) \(\frac{\sin(z)}{\cos(z)}, 条件:\cos(z) \ne 0\)
\(\cot(z)\) \(c\frac{\cos(z)}{\sin(z)}, 条件:s\sin(z) \ne 0\)
\(\sinh(z)\) \(\frac{e^z - e^{-z}}{2}\)
\(\cosh(z)\) \(\frac{e^z + e^{-z}}{2}\)

Properties of Complex Trig Functions
#

Sin(z) & Cos(z) in Rectangular Form
#

$$ \sin(z) = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} $$

$$ e^{ix} = \cos x + i \sin x, \quad e^{-ix} = \cos x - i \sin x. $$

$$ \sin(x+iy) = \frac{e^{-y}(\cos x + i \sin x) - e^{y}(\cos x - i \sin x)}{2i}. $$

$$ = \frac{(e^{-y}\cos x + i e^{-y}\sin x) - (e^{y}\cos x - i e^{y}\sin x)}{2i} $$

$$ = \frac{(e^{-y}\cos x - e^{y}\cos x) + i(e^{-y}\sin x + e^{y}\sin x)}{2i} $$

$$ \frac{e^{-y}\cos x - e^{y}\cos x}{2i} = \frac{- (e^{y}-e^{-y})\cos x}{2i} $$

$$ \frac{1}{i} = -i, \quad \frac{e^{y} - e^{-y}}{2} = \sinh(y) $$

$$ = i \cos(x) \sinh(y) $$

$$ \frac{i(e^{-y}\sin x + e^{y}\sin x)}{2i} = \frac{e^{y}+e^{-y}}{2} \sin x. $$

$$ \frac{e^{y}+e^{-y}}{2} = \cosh(y) $$

$$ = \sin(x) \cosh(y) $$

$$ \sin(x+iy) = \sin(x)\cosh(y) + i \cos(x)\sinh(y) $$

$$ \cos(z) = \cos(x)\cosh(y) - i \sin(x)\sinh(y) $$

sin(z) & sinh(z)
#

$$ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \sinh(z) = \frac{e^z - e^{-z}}{2} $$

Modulus of sin z and cos z
#

$$ \sin(z) = \sin(x)\cosh(y) + i \cos(x)\sinh(y) $$

$$ |\sin(z)|^2 = (\sin(x)\cosh(y))^2 + (\cos(x)\sinh(y))^2 $$

$$ |\sin(z)|^2 = \sin^2(x)\cosh^2(y) + \cos^2(x)\sinh^2(y) $$

$$ \cosh^2(y) = 1 + \sinh^2(y) $$

$$ |\sin(z)|^2 = \sin^2(x) + \sinh^2(y) $$

$$ |\cos(z)|^2 = \cos^2(x) + \sinh^2(y) $$

Zeros of sin(z) and cos(z)
#

$$ \sin(z) = 0 \iff \sin^2(x) + \sinh^2(y) = 0 $$

$$ \sin(x) = 0, \quad \sinh(y) = 0 $$

$$ \sin(z) = 0 \iff z = k\pi, \quad k \in \mathbb{Z} $$

$$ \cos(z) = 0 \iff \cos^2(x) + \sinh^2(y) = 0 $$

$$ \cos(x) = 0, \quad \sinh(y) = 0 $$

$$ \cos(z) = 0 \iff z = \frac{(k+1)\pi}{2}, \quad k \in \mathbb{Z} $$

Periodicity of sin(z), cos(z), sinh(z) and cosh(z)
#

Sin(z) & Cos(z)
#

$$ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos(z) = \frac{e^{iz} + e^{-iz}}{2}. $$

$$ \sin(z+2\pi) = \frac{e^{i(z+2\pi)} - e^{-i(z+2\pi)}}{2i} $$

$$ e^{i(z+2\pi)} = e^{iz} e^{i2\pi} = e^{iz} \cdot 1 = e^{iz} $$

$$ e^{-i(z+2\pi)} = e^{-iz} e^{-i2\pi} = e^{-iz} \cdot 1 = e^{-iz} $$

$$ \sin(z+2\pi) = \frac{e^{iz} - e^{-iz}}{2i} = \sin(z) $$

$$ \cos(z+2\pi) = \cos(z) $$

sinh(z) and cosh(z)
#

$$ \sinh(z) = \frac{e^z - e^{-z}}{2}, \quad \cosh(z) = \frac{e^z + e^{-z}}{2}. $$

$$ \sinh(z+2\pi i) = \frac{e^{z+2\pi i} - e^{-(z+2\pi i)}}{2}. $$

$$ = \frac{e^z e^{2\pi i} - e^{-z} e^{-2\pi i}}{2}. $$

$$ \sinh(z+2\pi i) = \frac{e^z - e^{-z}}{2} = \sinh(z) $$

同理:

$$ \cosh(z+2\pi i) = \cosh(z) $$

image.png

Ex. Find Z s.t. Cos(z) = Sin(z)
#

$$ \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz} - e^{-iz}}{2i} $$

$$ i(e^{iz} + e^{-iz}) = e^{iz} - e^{-iz}\Rightarrow(i-1)e^{iz} = -(i+1)e^{-iz}\Rightarrow e^{2iz} = \frac{-(i+1)}{i-1} $$