← Back to Index
Research & Engineering Archive

LA 8. Diagonalization and Eigenvalues

By Jingnan Huang · November 25, 2024 · 3669 Words

Last Edit: 11/25/24

Eigenvectors and Eigenvalues
#

Zero Eigenvalue
#

ex. Projection Matrix
#

![[LA8.DiagonalizationandEigenvalues.png]]

ex. Permutation Matrix
#

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Trace 迹
#

Solve Ax = lambdax
#

ex.
#

$$A= \begin{bmatrix}3 & 1 \\1 & 3\end{bmatrix}$$
$$\det (A-\lambda I) = \begin{vmatrix} 3-\lambda & 1 \\ 1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 - 1 = \lambda^2 - 6\lambda + 8$$
$$\lambda^2 - \text{trace}(A) \lambda + \det A = 0$$
$$A-4I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \quad (A-4I)x_1 = 0, \quad x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$ $$A-2I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad (A-2I)x_2 = 0, \quad x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$Ax = \lambda x, \quad \text{则有} (A+3I)x = \lambda x + 3x = (\lambda + 3)x$$

Trace Equal to Eigenvalue Summation 矩阵的迹等于特征值之和
#

Symmetry Matrix’s Eigenvector Orthogonal 对称矩阵的特征向量正交
#

$$\text{则有 } A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1, \text{ 左乘 } \mathbf{x}_2^\top \text{ 得 } \mathbf{x}_2^\top A\mathbf{x}_1 = \lambda_1 \mathbf{x}_2^\top \mathbf{x}_1$$ $$\mathbf{x}_2^\top A\mathbf{x}_1 = (\mathbf{A}^\top \mathbf{x}_2)^\top \mathbf{x}_1 = \lambda_2 \mathbf{x}_2^\top \mathbf{x}_1。\\ \text{因此有 } (\lambda_1 - \lambda_2) \mathbf{x}_2^\top \mathbf{x}_1 = 0$$

Complex eigenvalues 复数特征值
#

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{bmatrix}$$
$$\det (Q - \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0$$

Antisymmetric matrices 反对称矩阵
#

Triangular matrices and repeated eigenvalues 三角阵和重特征值
#

$$A = \begin{bmatrix}3 & 1 \\0 & 3\end{bmatrix}$$
$$\det (A - \lambda I) = \begin{vmatrix} 3-\lambda & 1 \\ 0 & 3-\lambda \end{vmatrix} = (3-\lambda)(3-\lambda) = 0 $$
$$(A-\lambda I)x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}x = 0, \quad \text{得到} \quad x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Diagonalization 对角化
#

$$AS = A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{x}_1 & \lambda_2 \mathbf{x}_2 & \cdots & \lambda_n \mathbf{x}_n \end{bmatrix} = S \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = S D$$

Power of A 矩阵的幂
#

$$\text{如果 } A\mathbf{x} = \lambda \mathbf{x}, \text{ 则有 } A^2\mathbf{x} = \lambda A\mathbf{x} = \lambda^2 \mathbf{x}。$$
$$A^2 = S D S^{-1} S D S^{-1} = S D^2 S^{-1}$$

Repeated eigenvalues 重特征值
#

Identity Matrix
#

UpperTriangular Matrix
#

$$A = \begin{bmatrix}3 & 1 \\0 & 3\end{bmatrix}$$
$$\det (A - \lambda I) = \begin{vmatrix} 3-\lambda & 1 \\ 0 & 3-\lambda \end{vmatrix} = (3-\lambda)(3-\lambda) = 0$$
$$(A-\lambda I)x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}x = 0, \quad \text{得到} \quad x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Difference equations 差分方程
#

$$\mathbf{u}_0 = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_n \mathbf{x}_n = S\mathbf{c}$$ $$A\mathbf{u}_0 = c_1 \lambda_1 \mathbf{x}_1 + c_2 \lambda_2 \mathbf{x}_2 + \cdots + c_n \lambda_n \mathbf{x}_n$$ $$\mathbf{u}_k = A^k \mathbf{u}_0 = c_1 \lambda_1^k \mathbf{x}_1 + c_2 \lambda_2^k \mathbf{x}_2 + \cdots + c_n \lambda_n^k \mathbf{x}_n = D^k S\mathbf{c}$$

Fibonacci sequence 斐波那契数列
#

$$\mathbf{u}_k = \begin{bmatrix} F_{k+2} \\ F_{k+1} \end{bmatrix}$$
$$F_{k+2} = F_{k+1} + F_k, \quad F_{k+1} = F_{k+1} \\ \text{写成矩阵形式为 } \mathbf{u}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{u}_k$$
$$\det(A - \lambda I) = \begin{vmatrix} 1-\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0$$

在因为是二阶方程,而且矩阵\(A - \lambda I\)是奇异矩阵,所以只要符合其中一个方程即可,立刻可以看出\(\begin{bmatrix} \lambda_1 \ 1 \end{bmatrix}\)是解

$$\text{从 } \mathbf{u}_0 = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2, \text{ 可以求得 } c_1 = -c_2 = \frac{1}{\sqrt{5}}$$$$ \begin{bmatrix} F_{100} \\ F_{99} \end{bmatrix} = A^{99} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^{99} & 0 \\ 0 & \lambda_2^{99} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \lambda_1^{100} + c_2 \lambda_2^{100} \\ c_1 \lambda_1^{99} + c_2 \lambda_2^{99} \end{bmatrix}. \\ \text{可知 } F_{100} \approx c_1 \lambda_1^{100}. $$