← Back to Index
Research & Engineering Archive

LA 7. Orthogonal and Projection

By Jingnan Huang · November 21, 2024 · 5753 Words

Last Edit 11/21/2024

正交向量Orthogonal vectors
#

Img

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x} + \mathbf{y}\|^2 ,||\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x}$$

Orthogonal Subspaces 正交子空间
#

Img

Nullspace is perpendicular to row space 零空间与行空间正交
#

$$\begin{bmatrix} \text{row}_1 \\ \text{row}_2 \\ \vdots \\ \text{row}_m \end{bmatrix} \times \mathbf{x} = \begin{bmatrix} \text{row}_1 \cdot \mathbf{x} \\ \text{row}_2 \cdot \mathbf{x} \\ \vdots \\ \text{row}_m \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} $$

Orthogonal complements 正交补
#

Orthonormal
#

$$例如\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} 还有 \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} , \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$ ## Orthonormal Vectors 标准正交向量 $$q_i^T q_j = \begin{cases} 0 & \text{若 } i \neq j \\ 1 & \text{若 } i = j \end{cases}$$

ATA
#

$$例:A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 5 \end{bmatrix}, \quad \text{则} \ A^T A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 8 & 30 \end{bmatrix} \text{是可逆的矩阵。} $$
$$例:A = \begin{bmatrix} 1 & 3 \\ 1 & 3 \\ 1 & 3 \end{bmatrix}, \quad \text{则} \ A^T A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 3 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 9 \\ 9 & 27 \end{bmatrix} \text{是不可逆矩阵。} $$

Projections in 2D 2D中的投影
#

Img

因为向量a和b是列向量,在计算它们的点积(即内积)时,通常需要将其中一个向量转置成行向量,这样才能进行矩阵乘法并得到标量

$$\begin{equation} x = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}, \quad p = a x = \mathbf{a} \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}. \end{equation} $$

Projection Matrix in 2D
#

$$proj_p=Pb$$
$$\begin{equation} p = a x = a \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}. \quad \text{则有} \quad P = \frac{\mathbf{a} \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}}. \end{equation} $$

Property of projection 投影的性质
#

Symmetry 对称性
#

Apply Twice
#

Closest vector 最短向量
#

Closest Vector Theorem
#

投影的方向到向量上最短的点就是其在改方向上的投影到向量的距离

Img

Proof
#

$$\|\vec{v} - \vec{x}\|^2 = \|\vec{v} + \text{Proj}_V(\vec{x}) - \text{Proj}_V(\vec{x}) - \vec{x}\|^2 \\ = \|\vec{v} - \text{Proj}_V(\vec{x}) + \text{Proj}_V(\vec{x}) - \vec{x}\|^2$$ $$\|\vec{v} - \vec{x}\|^2 = \|\vec{v} - \vec{x}^\parallel + \vec{x}^\parallel - \vec{x}\|^2 \\ = \|\vec{v} - \vec{x}^\parallel - \vec{x}^\perp\|^2$$ $$\|\vec{v} - \vec{x}\|^2 = \|\vec{v} - \vec{x}^\parallel\|^2 + \|-\vec{x}^\perp\|^2 \\ = \|\vec{v} - \vec{x}^\parallel\|^2 + \|\vec{x}^\perp\|^2$$

Orthogonal projection 正交投影
#

注意Orthogonal Projection和Orthogonal Linear Transformation是完全不同的东西 之所以叫Orthogonal Projection指的是这个Projection就是最一般的情况,就是一般所理解的正交于一个Subspace的投影

Img

Orthogonal Projection Formula 正交投影公式
#

正交投影公式是通过公式计算一个正交的投影向量在目标子空间的投影,和Orthogonal Linear Transformation无关

$$\text{Proj}_V(\vec{x}) = \vec{u}_1 (\vec{u}_1 \cdot \vec{x}) + \vec{u}_2 (\vec{u}_2 \cdot \vec{x})$$
$$\begin{align*} &= \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \left( \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix} \right) + \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \left( \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix} \right) \\ &= 2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix} \end{align*}$$

Projection Matrix 正交投影矩阵
#

Img

正交投影矩阵,将向量正交投影到Subspace上的一个矩阵,A可以是任意矩阵,不是非得是Orthogonal Matrix,其和正交投影公式干的是一样的事,不过用了不同的表达方式

$$\begin{align} \hat{x} &= (A^T A)^{-1} A^T b \\ p &= A \hat{x} = A (A^T A)^{-1} A^T b \\ P &= A (A^T A)^{-1} A^T=\frac{AA^T}{A^TA} \end{align}$$

注意区别大小写P

Case when b is in column Space A
#

$$\begin{align*} \mathbf{Pb} &= \mathbf{A}(\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{b} \\ &= \mathbf{A}(\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{Ax} \\ &= \mathbf{A}((\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{A}) \mathbf{x} \\ &= \mathbf{Ax} = \mathbf{b} \end{align*}$$

Case when b orthorgal to column Space A
#

$$\mathbf{Pb} = \mathbf{A}(\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{b} = \mathbf{A}(\mathbf{A}^\top \mathbf{A})^{-1} (\mathbf{A}^\top \mathbf{b}) = \mathbf{A}(\mathbf{A}^\top \mathbf{A})^{-1} 0 = 0$$

Orthogonal Projection Matrix in Orthogonal Basis 矩阵为正交矩阵的正交投影矩阵
#

正交矩阵的正交投影矩阵的正确读法是,当正交投影矩阵的矩阵为正交矩阵的情况下的正交投影,即改投影矩阵的A为Q的情况下,改投影将不体现“投影”的作用,而是在原空间中做Orthogonal Linear Transformation

$$\mathbf{P} = \mathbf{Q} (\mathbf{Q}^\top \mathbf{Q})^{-1} \mathbf{Q}^\top$$ - 因为\\(Q^TQ=I\Rightarrow P=QQ^T\\)

Orthogonal Matrix 正交矩阵
#

注意这里定义的不再是投影了,而是前面提到的矩阵为正交矩阵的正交投影矩阵,是一个东西

Orthogonal Matrix 正交矩阵
#

$$\mathbf{Q} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \text{则有 } \mathbf{Q}^\top = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} $$
$$T(\vec{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{x}$$
$$\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix}, \quad \mathbf{Q}^\top \mathbf{Q} = \begin{bmatrix} \mathbf{q}_1^\top \\ \vdots \\ \mathbf{q}_n^\top \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} = \mathbf{I}$$

Orthogonal transformations preserve orthogonality 角度不变性
#

变换前后角度不变的变换是Orthogonal transformation

Proof
#

$$||\vec x^2+\vec y^2||=||\vec x^2||+||\vec y^2||$$
$$\|T(\vec{v}) + T(\vec{w})\|^2 = \|T(\vec{v} + \vec{w})\|^2$$
$$\|T(\vec{v} + \vec{w})\|^2=||\vec v+\vec w||^2$$
$$||\vec v+\vec w||^2=||\vec v^2||+||\vec w||^2$$
$$||\vec v^2||+||\vec w||^2= \|T(\vec{v})\|^2 + \|T(\vec{w})\|^2$$

Orthogonal linear transformations preserves dot product 点积不变性
#

$$ T(\vec{v}) \cdot T(\vec{w}) = \vec{v} \cdot \vec{w} \text{ for all } \vec{v}, \vec{w} \in \mathbb{R}^n$$

变换前后dot product不变的变换就是Orthogonal Transformation

Proof
#

$$T(\vec{u}) \cdot T(\vec{v}) = (u_1 T(\vec{e}_1) + \dots + u_n T(\vec{e}_n)) \cdot (v_1 T(\vec{e}_1) + \dots + v_n T(\vec{e}_n))$$
$$T(\vec{u}) \cdot T(\vec{v}) = u_1 v_1 T(\vec{e}_1) \cdot T(\vec{e}_1) + \ldots + u_n v_n T(\vec{e}_n) \cdot T(\vec{e}_n)$$ $$= u_1 v_1 \|T(\vec{e}_1)\|^2 + \ldots + u_n v_n \|T(\vec{e}_n)\|^2 \\ = u_1 v_1 + \ldots + u_n v_n = \vec{u} \cdot \vec{v}$$

Converse statement of orthogonal linear transformation 逆命题的成立
#

Orthogonal transformations and orthonormal bases 正交基底保证正交变换
#

当Column Space为Orthogonal Vector的时候,Matrix为Orthogonal Transformation

Proof
#

$$\|T(\vec{x})\|^2 = \|T(x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3)\|^2$$ $$=\|T(x_1 \vec{e}_1) + T(x_2 \vec{e}_2) + T(x_3 \vec{e}_3)\|^2 \quad (\text{by linearity of } T)$$ $$= \|T(x_1 \vec{e}_1)\|^2 + \|T(x_2 \vec{e}_2)\|^2 + \|T(x_3 \vec{e}_3)\|^2 \quad (\text{by Pythagoras})$$ $$= x_1^2 \|T(\vec{e}_1)\|^2 + x_2^2 \|T(\vec{e}_2)\|^2 + x_3^2 \|T(\vec{e}_3)\|^2 \quad (\text{by linearity of } T)$$ $$= x_1^2 + x_2^2 + x_3^2 =||\vec x||^2~(\text{since columns are length } 1)$$ $$\mathbf{Q} = \frac{1}{3} \begin{bmatrix} 1 & -2\\ 2 & -1 \\ 2 & 2 \end{bmatrix}, \text{ 我们可以拓展其成为正交矩阵 } \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$$

Hadamard Matrix
#

$$\mathbf{Q} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$
$$\text{Proj}_V(\vec{x}) = Q Q^T \vec{x} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix} $$

Gram-Schmidt 施密特正交化
#

$$\mathbf{q}_1 = \frac{\mathbf{A}}{\|\mathbf{A}\|}, \quad \mathbf{q}_1 = \frac{\mathbf{A}}{\|\mathbf{A}\|} $$

Img

$$\mathbf{B} = \mathbf{b} - \frac{\mathbf{A}^\top \mathbf{b}}{\mathbf{A}^\top \mathbf{A}} \mathbf{A}$$
$$A^T\mathbf{B} = A^T(\mathbf{b} - \frac{\mathbf{A}^\top \mathbf{b}}{\mathbf{A}^\top \mathbf{A}} \mathbf{A})=0$$

Third Vector
#

$$\mathbf{q}_1 = \frac{\mathbf{A}}{\|\mathbf{A}\|}, \quad \mathbf{q}_1 = \frac{\mathbf{A}}{\|\mathbf{A}\|}\quad \mathbf{q}_3 = \frac{\mathbf{C}}{\|\mathbf{C}\|}$$ $$\mathbf{C} = \mathbf{c} - \frac{\mathbf{A}^\top \mathbf{c}}{\mathbf{A}^\top \mathbf{A}} \mathbf{A} - \frac{\mathbf{B}^\top \mathbf{c}}{\mathbf{B}^\top \mathbf{B}} \mathbf{B} $$

ex. Two Vectors
#

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \text{则有 } \mathbf{A} = \mathbf{a}, \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$ - 则有Orthonormal Matrix Q $$\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} = \begin{bmatrix} 1 / \sqrt{3} & 0 \\ 1 / \sqrt{3} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 1 / \sqrt{2} \end{bmatrix}$$

Least Squares 最小二乘
#

$$\left[ \begin{array}{cc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ \end{array} \right] \left[ \begin{array}{c} C \\ D \\ \end{array} \right] = \left[ \begin{array}{c} 1 \\ 2 \\ 2 \\ \end{array} \right] $$

Img

因为\(A^T(b-A\hat x)=0\)

$$A^TA=\left[ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ \end{array} \right] \left[ \begin{array}{ccc} 1 & 1\\ 1 & 2 \\ 1 & 3\\ \end{array} \right] = \left[ \begin{array}{ccc} 3 & 6\\ 6 & 14\\ \end{array} \right], A^Tb=\left[ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ \end{array} \right] \left[ \begin{array}{ccc} 1\\ 2\\ 2\\ \end{array} \right] =\left[ \begin{array}{cc} 5 \\ 11 \\ \end{array} \right]$$ $$\quad \text{则有} \left[ \begin{array}{cc} 3 & 6 \\ 6 & 14 \\ \end{array} \right] \left[ \begin{array}{c} \hat{C} \\ \hat{D} \\ \end{array} \right] = \left[ \begin{array}{c} 5 \\ 11 \\ \end{array} \right]$$

Img

矩阵ATA
#