← Back to Index
Research & Engineering Archive

LA 6. Determinants

By Jingnan Huang · October 24, 2024 · 5928 Words

Last Edit: 10/24/24

Introduction to Determinate
#

Img

Determinate in R^2
#

Img

Img

The Determinate of a 3x3 Matrix
#

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} | & | & | \ \vec{u} & \vec{v} & \vec{w} \ | & | & | \end{bmatrix} $$

Img

Determinate为0的几何意义
#

Img

Definition 6.1.1 Determinant of a 3 × 3 matrix, in terms of the Columns
#

Img

$$\begin{align}\text{det} , A = \vec{u} \cdot (\vec{v} \times \vec{w}) \ = \begin{bmatrix} a_{11} \ a_{21} \ a_{31} \end{bmatrix} \cdot \left( \begin{bmatrix} a_{12} \ a_{22} \ a_{32} \end{bmatrix} \times \begin{bmatrix} a_{13} \ a_{23} \ a_{33} \end{bmatrix} \right) \ = \begin{bmatrix} a_{11} \ a_{21} \ a_{31} \end{bmatrix} \cdot \begin{bmatrix} a_{22}a_{33} - a_{32}a_{23} \ a_{32}a_{13} - a_{12}a_{33} \ a_{12}a_{23} - a_{22}a_{13} \end{bmatrix} \ = a_{11}(a_{22}a_{33} - a_{32}a_{23}) + a_{21}(a_{32}a_{13} - a_{12}a_{33}) + a_{31}(a_{12}a_{23} - a_{22}a_{13}) \ = a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} + a_{21}a_{32}a_{13} - a_{21}a_{12}a_{33} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13}\end{align} $$

上述介绍的所有都是有助于理解Determinant的而非考试的重点,意义在于理解,正式的内容将从下面开始

Properties of Determinant
#

Linearity of Determinant
#

$$L(\vec{x}) = \text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{x}+\vec y & - \end{bmatrix} \right)$$
- Matrix23位置的值为一个Variable x,而因为det在任意一行,列中都是线性的,即其也满足Linear的两个定义
$$L(\vec{x} + \vec{y}) = L(\vec{x}) + L(\vec{y}) \quad \text{and} \quad L(k\vec{x}) = kL(\vec{x})$$
- 在Determinate中有
$$\text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{x} + \vec{y} &- \end{bmatrix} \right) = \text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{x} & - \end{bmatrix} \right) + \text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{y} & - \end{bmatrix} \right) $$
$$\text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & k\vec{x} & - \end{bmatrix} \right) = k \, \text{det} \left( \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{x} & - \end{bmatrix} \right) $$
- 如果在矩阵的一行乘上 t而剩下的n-1行保持不变,则行列式的值就要乘上 t $$\left| \begin{array}{cc} ta & tb \\ c & d \end{array} \right| = t \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| $$ - 同理对于Linear Transformation的另外一个性质也通用 $$\left| \begin{array}{cc} a + a' & b + b' \\ c & d \end{array} \right| = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| + \left| \begin{array}{cc} a' & b' \\ c & d \end{array} \right| $$ - 需要知道的是,这并不是在说$$det(A+B)=det(A)+det(B)$$ - 而是对于Square Matrxi的每一行来说是Linear的

Change of matrix’s effect on Determinate
#

$$\left| \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right| = -1 $$

Non-Squre Matrix Can’t Have Determinate
#

Row Operation’s influence on Determinate
#

$$\left| \begin{array}{cc} a & b \\ c - ta & d - tb \end{array} \right| = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| - \left| \begin{array}{cc} a & b \\ ta & tb \end{array} \right| $$ $$= \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| - t \left| \begin{array}{cc} a & b \\ a & b \end{array} \right| $$ - 根据[[#Change of matrix's effect on Determinate]],后一项的Determinant为0,即整体Det不变

Zero Rows Determinant
#

$$\left| \begin{array}{cc} ta & tb \\ c & d \end{array} \right| = t \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|$$ - 有$$\left| \begin{array}{cc} 0\cdot a & 0\cdot b \\ c & d \end{array} \right|= 0 \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|$$

Trangular Matrix’s Determinant
#

$$\left| \begin{array}{cccc} d_1 & * & \cdots & * \\ 0 & d_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{array} \right| = \left| \begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{array} \right| = d_1 d_2 \cdots d_n \left| \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right| = d_1 d_2 \cdots d_n $$
$$\left| \begin{array}{cccc} d_1 & * & \cdots & * \\ 0 & d_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{array} \right|= \left| \begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{array} \right|$$ - 再通过[[#Linearity of Determinate]]提取出每个Row Pivot上的d $$= d_1 d_2 \cdots d_n \left| \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right| = d_1 d_2 \cdots d_n$$

Singular Matrix’s Determinant
#

Numerial Approach of Determinant
#

$$\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] \rightarrow \left[ \begin{array}{cc} a & b \\ 0 & d - \frac{c}{a}b \end{array} \right] $$

$$\left| \begin{array}{cc} a & b \ c & d \end{array} \right| = a \left( d - \frac{c}{a}b \right) = ad - bc $$

Determinant of Product
#

Determinant of Inverse
#

Determinant of Square
#

Determinant of Coefficient before Matrix
#

Determinant of Transpose
#

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = \left| \begin{array}{cc} a & c \\ b & d \end{array} \right| = ad - bc $$

Formular for Determinant
#

2x2
#

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = \left| \begin{array}{cc} a & 0 \\ c & d \end{array} \right| + \left| \begin{array}{cc} 0 & b \\ c & d \end{array} \right| = \left| \begin{array}{cc} a & 0 \\ c & 0 \end{array} \right| + \left| \begin{array}{cc} 0 & d \\ 0 & d \end{array} \right| + \left| \begin{array}{cc} 0 & b \\ 0 & d \end{array} \right| = 0 + ad - cb + 0 = ad - bc $$

3x3
#

$$\left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| = \left| \begin{array}{ccc} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{array} \right| + \left| \begin{array}{ccc} a_{11} & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & a_{32} & 0 \end{array} \right| + \left| \begin{array}{ccc} 0 & a_{12} & 0 \\ a_{21} & 0 & 0 \\ 0 & 0 & a_{33} \end{array} \right| + \left| \begin{array}{ccc} 0 & a_{12} & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & 0 \end{array} \right| + \left| \begin{array}{ccc} 0 & 0 & a_{13} \\ a_{21} & 0 & 0 \\ 0 & a_{32} & 0 \end{array} \right| + \left| \begin{array}{ccc} 0 & 0 & a_{13} \\ 0 & a_{22} & 0 \\ a_{31} & 0 & 0 \end{array} \right| $$
$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$
- 其中所有的负值,都是用了[[#Change of matrix's effect on Determinate]]将Matrix做Row Exchange成Uppertriangular Matrix而导致的Determinant的变号

Img

Big Formula A
#

$$det(A)=\sum_{n!}\pm a_{1\alpha}a_{2\beta}a_{3\gamma}\dots a_{n\omega}$$
$$\left| \begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array} \right| = \left| \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right| + \left| \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right| $$

Cofactor Formula 代数余子式
#

3x3
#

$$\text{det} \left( \mathbf{A} \right) = a_{11} \left( a_{22}a_{33} - a_{23}a_{32} \right) + a_{12} \left( -a_{21}a_{33} + a_{23}a_{31} \right) + a_{13} \left( a_{21}a_{32} - a_{22}a_{31} \right) $$ $$=\left| \begin{array}{ccc} a_{11} & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{array} \right| + \left| \begin{array}{ccc} 0 & a_{12} & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & a_{33} \end{array} \right| + \left| \begin{array}{ccc} 0 & 0 & a_{13} \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{array} \right|$$

Cofactor Formula
#

$$\text{det} \left( \mathbf{A} \right) = a_{11} C_{11} + a_{12} C_{12} + \cdots + a_{1n} C_{1n} $$

ex. in 2x2
#

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad + b(-c)$$

ex. 三对角阵(tridiagonal matrix)
#

$$\mathbf{A_4} = \left[ \begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right] $$
![[LA6.Determinats-9.png]]

Formula for A Inverse
#

$$\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] = \frac{1}{ad - bc} \left[ \begin{array}{cc} d & -b \\ -c & a \end{array} \right] $$
- 通过观察上2x2的例子可以得出
$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^\top$$

Adjoint Matrix 伴随矩阵
#

Proof of A Inverse
#

$$A\cdot \mathbf{A}^{-1} = A\cdot\frac{1}{\det(\mathbf{A})} \mathbf{C}^\top=I$$ $$A\cdot C^T=det(A)\cdot I$$
$$\mathbf{AC}^T = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \cdots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \cdots & C_{nn} \end{bmatrix} $$
- 对于所有结果矩阵对角线上的的元素来说都有
$$\sum_{j=1}^{n} a_{1j} C_{1j} = \det(\mathbf{A})$$

Img

$$AC^T = \begin{bmatrix} \det A & 0 & 0 & \cdots & 0 \\ 0 & \det A & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \det A \end{bmatrix} = \det(A)I $$

Cramer’s Rule 克莱姆法则
#

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{b} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^T \mathbf{b}$$
$$x_j = \frac{\det(\mathbf{B}_j)}{\det(\mathbf{A})} $$
$$\mathbf{B}_1 = \begin{bmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ b_3 & a_{32} & \ddots & \vdots \\ \vdots & \vdots & \ddots & a_{n-1\,n} \\ b_n & a_{n2} & \cdots & a_{nn} \end{bmatrix} , \quad \mathbf{B}_n = \begin{bmatrix} a_{11} & \cdots & a_{1\,n-1} & b_1 \\ a_{21} & \cdots & a_{2\,n-1} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n-1\,1} & \cdots & a_{n-1\,n-1} & b_{n-1} \\ a_{n1} & \cdots & a_{n2} & b_n \end{bmatrix} $$

其实相比于消元法,采用克莱姆法则计算方程的解效率较低。。。