← Back to Index
Research & Engineering Archive

LA 1. Vector Line & Plane

By Jingnan Huang · October 15, 2024 · 2559 Words

Last Edit: 11/26/24

Set Notation 集合
#

Union of Sets 并集
#

Intersection of Sets 交集
#

Vector 向量
#

Norm 模
#

Dot Product 点积
#

Definition
#

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{i=1}^n a_i b_i$$

Angle Between Vectors
#

Application
#

最终公式
#

$$\vec F=F_u\cdot \vec u= (\vec F\cdot u\cdot\cos\theta)\cdot \vec u=(F\cdot\frac{{r_xi+r_yj+r_zk}}{\sqrt{r_x^2+r_y^2+r_z^2}\cdot 1})\cdot\vec u$$

Line 直线
#

Img

为什么需要两个向量 —> 因为需要Position Vector区分不同平行的直线

Plane
#

注意这里的Plane是一个Subset,不是Subspace,具体原因将在后面指出

Normal Vector
#

Proof
#

Second definition
#

Img

所有的Vector都为Position Vector,即以坐标系Origin为Head的Vector

ex.
#

$$\vec{v}_1 = \begin{bmatrix} 2 - 0 \\ 0 - 1 \\ 4 - 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
$$\vec{v}_2 = \begin{bmatrix} 0 - 0 \\ 0 - 1 \\ 1 - 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$