← Back to Index
Research & Engineering Archive

EF 9. Resistive Circuits

By Jingnan Huang · March 03, 2025 · 1185 Words

EF9.ResistiveCircuits
#

Last Edit: 3/3/25

Ohm’s Law
#

Symbol for a Resistor
#

EF9.ResistiveCircuits.png

Mathematical Relationship
#

$$ v(t) = Ri(t), \text{ where } R \geq 0 $$

Graphical representation of V vs. I
#

EF9.ResistiveCircuits-1.png

EF9.ResistiveCircuits-2.png

Conductance 电导
#

Power Relationships
#

$$ p(t) = v(t) i(t) $$

$$ p(t) = Ri^2(t) = \frac{v^2(t)}{R} $$

$$ p(t) = \frac{i^2(t)}{G} = Gv^2(t) $$

Conductor’s Influence in Circuit
#

EF9.ResistiveCircuits-3.png

Kirchhoff’s Laws
#

KCL Current Law
#

EF9.ResistiveCircuits-4.png

Kirchhoff’s Voltage Law
#

Voltage Division
#

EF9.ResistiveCircuits-5.png

$$ -v(t) + v_{R1} + v_{R2} = 0\Rightarrow v(t) = v_{R1} + v_{R2} $$

$$ = R_1 \left[ \frac{v(t)}{R_1 + R_2} \right] = \frac{R_1}{R_1 + R_2} v(t) $$

Multiple-Source/Resistor Networks
#

EF9.ResistiveCircuits-6.png

ex. Find Voltage in a fragment
#

有以下图 a,求 bd 段的等效电路

EF9.ResistiveCircuits-7.png

$$ 10kI + 20kI + 12 + 30kI - 6 = 0\Rightarrow60kI = -6 \Rightarrow I = -0.1 , \text{mA} $$

ex2.
#

求出 \(V_S\) 段的 Voltage

EF9.ResistiveCircuits-8.png

Single-Node-Pair Circuits
#

EF9.ResistiveCircuits-9.png

$$ i(t) = \frac{v(t)}{R_1} + \frac{v(t)}{R_2} = \left( \frac{1}{R_1} + \frac{1}{R_2} \right) v(t) = \frac{v(t)}{R_p} $$

$$ i_1(t) = \frac{v(t)}{R_1}\Rightarrow i_1(t) = \frac{R_2}{R_1 + R_2} i(t) $$

Multiple-Source/Resistor Networks
#

EF9.ResistiveCircuits-10.png

$$ i_0(t) = i_1(t) + i_2(t) + \ldots + i_N(t) = \left( \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_N} \right) v(t) $$

$$ i_j(t) = \frac{v(t)}{R_j} \quad \quad i_j(t) = \frac{R_p}{R_j} i_o(t) $$