← Back to Index
Research & Engineering Archive

EF 3. Gauss' Law Edited

By Jingnan Huang · March 28, 2025 · 1795 Words

Last Edit: 3/28/25

Electric Flux
#

image.png

$$ \Delta \Phi = (E \cos \theta) \Delta A $$

$$ \Phi=\sum \vec E\cdot \Delta \vec A,or~\Phi=\int\vec E\cdot d\vec A $$

ex.
#

Consider a cylinder of radius R in a uniform electric field with axis parallel to the field direction, what are the flux through the end caps, cylindrical surface, and the net flux?

EF3.Gauss’Law-1.png

image.png

Gauss’s Law
#

image.png

这是一个 Gauss‘ Law 的 Special Case

$$ \Phi = \oint \vec{E} \cdot d\vec{A} = \oint E , dA = E \oint dA= E \cdot 4\pi r^2 = \left( \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2} \right) \cdot 4 \pi r^2 = \frac{q}{\varepsilon_0} $$

$$ {\varepsilon_0}\Phi = Q_{\text{enc}} $$

ex. Gauss’s Law
#

Consider two charges with opposite signs and equal magnitude (+q and –q). Determine the electric flux of the four Gaussian surfaces are shown below:

image.png

A charged Isolated Conductor
#

image.png

The External Electric Field
#

image.png

$$ ε₀EA = σA $$

Applying Gauss’s Law: Cylindrical Symmetry
#

$$ \Phi = \frac{Q_{\text{enc}}}{\epsilon_0}= \oint \vec{E} \cdot d\vec{A} $$

$$ E = \frac{\lambda}{2\pi\epsilon_0 r} $$

ex. Lighting strikes the tree
#

当雷电击中一棵树的时候,其可以被看作是一个导线,而半径为r内的空气都将被 Ionized,计算出这个半径r,令 E=3\times 10^6 N/C

$$ r = \frac{\lambda}{2\pi\epsilon_0 E}= \frac{1 \times 10^{-3}\ \text{C/m}}{(2\pi)(8.85 \times 10^{-12}\ \text{C}^2/\text{N}\cdot\text{m}^2)(3 \times 10^6\ \text{N/C})}= 6\ \text{m} $$

Applying Gauss’s Law: Planar Symmetry
#

$$ \Phi=\frac{\sigma A_0}{\varepsilon_0} $$

$$ \Phi=EA=2EA_0=\frac{\sigma A_0}{\varepsilon_0} \Rightarrow E=\frac{\sigma}{2\varepsilon_0} $$

Applying Gauss’s Law Shell Theorem #1
#

$$ \Phi = \oint \vec{E} \cdot d\vec{A} = E \oint dA = E \cdot 4\pi r^2 \\varepsilon_0 \Phi = q_{\text{enc}} \quad \text{(where } \varepsilon_0 \text{ is the permittivity of free space)} \\varepsilon_0 E \cdot 4\pi r^2 = q_{\text{enc}}\Rightarrow E = \frac{1}{4\pi \varepsilon_0} \cdot \frac{q_{\text{enc}}}{r^2} $$

Applying Gauss’s Law Shell Theorem #2
#

However, there can still be an electric field within the shell, created by other objects

需要注意的是,Shell 内部仍可能存在其他物体所产生的电场

Applying Gauss’ Law: Spherical Symmetry
#

EF3.Gauss’Law-6.png

EF3.Gauss’Law-8.png

$$ \rho ;=; \frac{q}{\tfrac{4}{3}\pi R^3} $$

$$ Q_{\text{enclosed}} ;=; \rho \times \bigl(\tfrac{4}{3}\pi r^3\bigr) = \frac{q}{\tfrac{4}{3}\pi R^3};\times;\tfrac{4}{3}\pi r^3 = q,\frac{r^3}{R^3} $$

$$ \oint \mathbf{E}\cdot \mathrm{d}\mathbf{A} = E,\cdot 4\pi r^2 $$

$$ E \cdot 4\pi r^2 = \frac{Q_{\text{enclosed}}}{\varepsilon_0} = \frac{q,\tfrac{r^3}{R^3}}{\varepsilon_0} \Rightarrow E(r) = \frac{1}{4\pi \varepsilon_0} ,\frac{q,\tfrac{r^3}{R^3}}{r^2} = \frac{1}{4\pi \varepsilon_0},\frac{q}{R^3},r $$