← Back to Index
Research & Engineering Archive

DYN 4. N-T Coordinates Edited

By Jingnan Huang · March 24, 2025 · 623 Words

Last Edit: 3/24/25

Why N-T
#

image.png

Radius of curvature 曲率半径
#

$$ \rho = \frac{(1 + y’^2)^{3/2}}{|y’’|} $$

Distance in n-t System
#

$$ ds=\rho d \beta $$

Velocity in n-t System
#

$$ \vec{v} = v \vec{e}_t $$

$$ v = \dot{s} = \frac{ds}{dt} = \frac{\rho d\beta}{dt} = \rho \dot{\beta} \Rightarrow \vec{v} = v \vec{e}_t = \rho \dot{\beta} \vec{e}_t $$

$$ \frac{d\theta}{dt} = \dot{\theta} = \frac{v}{\rho} $$

Acceleration in n-t System
#

$$ \vec{a} = \frac{d\vec{v}}{dt} = \frac{d \left( v \hat{e}_t \right)}{dt} = \dot{v} \hat{e}_t + v \frac{d\hat{e}_t}{dt} $$

$$ \vec{a} = \dot{v} \hat{e}_t + v \frac{d\theta}{dt} \hat{e}_n = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n $$

Tangential Acceleration
#

$$ a_t = \frac{dV}{dt} $$

Normal Acceleration
#

$$ a_n = V \dot{\theta}=\rho \dot{\theta}^2 = \frac{V^2}{\rho} $$