← Back to Index
Research & Engineering Archive

DYN 2. Plane Curvilinear Motion and Rectangular Coordinate Edited

By Jingnan Huang · March 24, 2025 · 658 Words

Last Edit: 3/24/25

Plane Curvilinear Motion
#

image.png

$$ \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} $$

$$ \vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \frac{dx(t)}{dt}\hat{i} + \frac{dy(t)}{dt}\hat{j} $$

$$ \vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d^2x(t)}{dt^2}\hat{i} + \frac{d^2y(t)}{dt^2}\hat{j} $$

Instantaneous Direction 瞬时方向
#

ex. Collision Problem in Plane
#

The motions of two particles (A and B) are described by the position vectors. Find the point at which the particles collide and their speeds just before the collision

$$ \vec{r}_A = \left[ 3t , \hat{i} + 9t(2 - t) , \hat{j} \right] , \text{m} ,\vec{r}_B = \left[ 3(t^2 - 2t + 2) , \hat{i} + 3(t - 2) , \hat{j} \right] , \text{m} $$

Rectangular Coordinate System
#

$$ \vec{r} = x\hat{i} + y\hat{j} + z\hat{k},|\vec{r}| = \sqrt{x^2 + y^2 + z^2} $$

image.png

Velocity
#

$$ \vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} \left( x\hat{i} + y\hat{j} + z\hat{k} \right) $$

$$ \vec{v} = \left( \frac{dx}{dt}\hat{i} + x\frac{d\hat{i}}{dt} \right) + \left( \frac{dy}{dt}\hat{j} + y\frac{d\hat{j}}{dt} \right) + \left( \frac{dz}{dt}\hat{k} + z\frac{d\hat{k}}{dt} \right) $$

$$ vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k} $$

Acceleration
#

$$ \vec{a} = \frac{dv_x}{dt} \hat{i}+ \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k} $$