← Back to Index
Research & Engineering Archive

DYN 1. Rectilinear Motion Edited

By Jingnan Huang · March 24, 2025 · 776 Words

Last Edit: 3/24/25

直线运动指的是物体沿着一条直线路径移动。这种运动的特点是,物体的速度和加速度(如果有的话)的方向只在一条直线上

Velocity & Speed
#

Acceleration 加速度
#

$$ a=\frac{d\vec v}{dt}=\frac{d^2\vec x}{dt^2} $$

Acceleration as a function of time a(t)
#

$$ a(t) = \frac{dv}{dt} \implies \int_{t_0}^{t} a(t) , dt = \int_{v_0}^{v} dv = v - v_0 \implies v = v_0 + \int_{t_0}^{t} a(t) , dt $$

$$ v(t) = \frac{ds}{dt} \implies \int_{t_0}^{t} v , dt = \int_{s_0}^{s} ds = s - s_0 \implies s = s_0 + \int_{t_0}^{t} \left[ v_0 + \int_{t_0}^{t} a(t) , dt \right] dt $$

$$ v=v_0+\int_{t_0}^{t} a , dt=v_0+a\int_{t_0}^{t} , dt=v_0+a(t-t_0) $$

$$ s=s_0+\int_{t_0}^{t} \left[ v_0+a(t-t_0) \right] dt=s_0+\frac{1}{2}at^2-at_0t+v_0t $$

Acceleration is a function of position a(s)
#

$$ a(s)=\frac{dv}{dt}\Rightarrow dt=\frac{dv}{a(s)} $$

$$ v=\frac{ds}{dt}\Rightarrow dt=\frac{ds}{v} $$

$$ \frac{dv}{a(s)}=\frac{ds}{v}\Rightarrow \int a(s)ds=\int vdv=\frac{1}{2}(v^2-{v_0}^2) $$

$$ \frac{1}{2}(v^2-{v_0}^2)=a\int^s_{s_0}ds=a\Delta S\Rightarrow v^2={v_0}^2+2a\Delta S $$

在加速度是位置的函数的时候没有对于s的公式

ex. Speed of asteroid falling
#

image.png

Find the impact speed of an asteroid falling to earth from a height of 109m (from the center of earth), when 𝑣𝑜 =-50 m/s. Consider m(earth)=6e24 kg, and G=6.67e-11Nm²/kg², and r(earth)=6.4e6 m

$$ v^2={v_0}^2-2\int\frac{Gm_e}{s^2}ds={v_0}^2+2Gm_e(\frac{1}{s}-\frac{1}{s_0}) $$

Acceleration as a function of velocity a(v)
#

$$ a(v)=\frac{dv}{dt}\Rightarrow dt=\frac{dv}{a(v)}\Rightarrow \int^t_{t_0}dt=\int^v_{v_0}\frac{dv}{a(v)}=t-t_0 $$

ex. Projectile Motion
#

A projectile travels through fluid with an initial velocity of 60 m/s. The acceleration is 𝑎 = −0.4 v3𝑚/𝑠². Find v after 4 s

$$ a(v)=\frac{dv}{dt}\Rightarrow \int^t_{t_0} dt=\int\frac{dv}{-0.4v^3}=\frac{-1}{0.4}\int v^{-3}dv $$

$$ t-t_0=\frac{-1}{0.4}\frac{-1}{2}=(\frac{1}{v^2}-\frac{1}{{v_0}^2})\Rightarrow v=0.559m/s $$

Summary
#

$$ ∫dv=∫a(t) dt\int dv = \int a(t) , dt $$

$$ ∫v dv=∫a ds\int v , dv = \int a , ds $$

$$ ∫dva(v)=∫dt\int \frac{dv}{a(v)} = \int dt $$

$$ V = V_0 + at $$

$$ S = S_0 + V_0 t + \frac{1}{2} a t^2 $$

$$ V^2 = V_0^2 + 2a \Delta s $$