← Back to Index
Research & Engineering Archive

Calculus 8. Methods of Integration

By Jingnan Huang · March 06, 2025 · 1848 Words

Last Edit: 3/6/25

Integration by part
#

$$ \left( u(x) v(x) \right)’ = u’(x) v(x) + u(x) v’(x) $$

$$ \int u(x) v’(x) ,dx = \int (u(x) v(x))’ ,dx - \int v(x) u’(x) ,dx $$

$$ \int u(x) v’(x) ,dx = u(x) v(x) - \int v(x) u’(x) ,dx $$

$$ \int u ,dv = uv - \int v ,du $$

Guidelines for Integration by Parts
#

通常使用 LIATE 法则(Logarithmic, Inverse trig, Algebraic, Trigonometric, Exponential) 优先选择 LIATE 顺序靠前的函数作为 u,然后把剩下的部分作为 dv

ex. Integral By Parts
#

考虑积分 $\int xe^{2x}dx$

$$ \underbrace{x \frac{1}{2} e^{2x}}{uv} - \int \underbrace{\frac{1}{2} e^{2x}}{v} \underbrace{dx}_{du} $$

$$ \int xe^{2x}dx=\int \underbrace{x}{u} \underbrace{e^{2x} ,dx}{dv} = \underbrace{x \frac{1}{2} e^{2x}}{uv} - \int \underbrace{\frac{1}{2} e^{2x}}{v} \underbrace{dx}_{du} = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} + C $$

ex. Getting the original Integral
#

求 $\int x^2 sinx dx$

$$ \int x^2 \sin x ,dx = -x^2 \cos x + \int 2x \cos x ,dx= -x^2 \cos x + x^2 \cos x + \int x^2 \sin x ,dx $$

$$ \int x^2 \sin x ,dx=\int x^2 \sin x ,dx $$

Tabular Method
#

Calculus8.MethodsofIntegration.png

Trigonometric Substitute
#

$$ \sqrt{a^2 - x^2} → 令~ x=asinθ \ \sqrt{a^2 + x^2}→ 令 x=atanθ \ \sqrt{x^2 - a^2} → 令x=asecθ $$

\sqrt{a^2 - x^2} 的积分
#

这里的 a 是为了化简根号中的被减数的

ex.
#

有 Integral $\int \frac{dx}{\sqrt{4 - x^2}}$

$$ \sqrt{4-4\sin^2\theta}\Rightarrow \sqrt{4(1-\sin^2\theta)}=2\cos\theta $$

$$ \int \frac{2\cos\theta , d\theta}{2\cos\theta} = \int d\theta = \theta + C $$

$$ \int \frac{dx}{\sqrt{4 - x^2}} = \arcsin\frac{x}{2} + C $$

\sqrt{a^2 + x^2}
#

$$ x=atan⁡θ,dx=asec⁡^2θ dθ $$

$$ \sqrt{a^2 + x^2} = a \sec\theta $$

ex.
#

$$ \int \frac{dx}{\sqrt{9 + x^2}} $$

$$ \sqrt{9 + x^2} = 3\sec\theta \int \frac{3\sec^2\theta , d\theta}{3\sec\theta} = \int \sec\theta , d\theta= \ln | \sec\theta + \tan\theta | + C $$

$$ \int \frac{dx}{\sqrt{9 + x^2}} = \ln \left| \frac{\sqrt{9 + x^2}}{3} + \frac{x}{3} \right| + C $$

\sqrt{x^2 - a^2} 的积分
#

$$ x = a \sec\theta, \quad dx = a \sec\theta \tan\theta , d\theta $$

$$ \sec^2\theta - 1 = \tan^2\theta \Rightarrow \sqrt{x^2 - a^2} = a \tan\theta $$

ex.
#

解 $\int \frac{dx}{\sqrt{x^2 - 16}}$

$$ \int \frac{4\sec\theta \tan\theta , d\theta}{4\tan\theta} = \int \sec\theta , d\theta\ln | \sec\theta + \tan\theta | + C $$

Summary
#

根式形式 代换方式 结果表达式
$\sqrt{a^2 - x^2}$ $x = a\sin\theta$ $\sqrt{a^2 - x^2} = a\cos\theta$
$\sqrt{a^2 + x^2}$ $x = a\tan\theta$ $\sqrt{a^2 + x^2} = a\sec\theta$
$\sqrt{x^2 - a^2}$ $x = a\sec\theta$ $\sqrt{x^2 - a^2} = a\tan\theta$

Partial Fraction
#

$$ \int\frac{1}{x^2-5x+6}dx $$

Partial Fraction
#

$$ \frac{P(x)}{(x-a)(x-b)} $$

$$ \frac{P(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} $$

$$ P(x)=A(x-b)+B(x-a) $$

ex.
#

因式分解 $\frac{3x + 5}{(x-1)(x+2)}$

$$ \frac{3x + 5}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2} $$

$$ 3x+5=A(x+2)+B(x-1) $$

ex. Quadratic Factors
#

现在有 $\frac{2x^3 - 4x - 8}{(x^2 - x)(x^2 + 4)} , dx$

$$ \frac{2x^3 - 4x - 8}{x(x - 1)(x^2 + 4)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{Cx + D}{x^2 + 4} $$

$$ 2x^3 - 4x - 8 = A(x - 1)(x^2 + 4) + Bx(x^2 + 4) + (Cx + D)(x)(x - 1) $$

Improper Integrals
#

$$ \int_{a}^{\infty} f(x) , dx = \lim_{b \to \infty} \int_{a}^{b} f(x) , dx $$

ex.
#

计算积分 $\int_{1}^{\infty} \frac{dx}{x}dx$

$$ \int_{1}^{\infty} \frac{dx}{x} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}= \lim_{b \to \infty} \left[ \ln x \right]{1}^{b} = \lim{b \to \infty} (\ln b - 0) = \infty $$