← Back to Index
Research & Engineering Archive

CAL 11. Complex Number

By Jingnan Huang · January 09, 2025 · 5670 Words

Last Edit: 1/9/25

1. Imaginary and complex numbers
#

Definition of Imaginary Number
#

ex.
#

Solve the equation \(x^2 +2x+2 = 0\). Using the quadratic formula $$z_1 = \frac{-2 + \sqrt{4 - 8}}{2} = -1 + i \quad \text{and} \quad z_2 = \frac{-2 - \sqrt{4 - 8}}{2} = -1 - i. $$

Definition of Complex Number
#

Definition of Complex Conjugate
#

2. Complex Arithmetic 复数运算
#

Addition and Sibtraction
#

Propisition 2.1 Complex Number’s Conjugate
#

对于任何复数z,

Proof
#

假设\(z = a + bi\),其中a是实部,b是虚部,那么:

2.2 Multiplication
#

$$(a +bi) (c+di) = ac+adi +cbi +bdi^2 = (ac-bd)+(ad+bc)i$$

2.3 Division
#

  1. 将方程 (2) 乘以a,方程 (3) 乘以b,然后将两个结果相加,消去y得到\((a^2 + b^2)x = a\),从而解得\(x = \frac{a}{a^2 + b^2}\)
  2. 类似地,将方程 (2) 乘以−b,方程 (3) 乘以a,然后将两个结果相加,消去x得到\((a^2 + b^2)y = -b\),从而解得\(y = \frac{-b}{a^2 + b^2}\)

Proposition 2.2 Complex Number’s Division
#

Proposition 2.3 Complex Number’s Conjugate’s Property
#

Proof
#

$$\begin{aligned} \overline{(a + bi) + (c + di)} &= \overline{(a + c) + (b + d)i} \ &= (a + c) - (b + d)i \ &= (a - bi) + (c - di) \ &= \overline{(a + bi)} + \overline{(c + di)} \end{aligned}$$ $$\begin{aligned} \overline{(a + bi),(c + di)} &= \overline{(ac - bd) + (ad + bc),i} \ &= (ac - bd) - (ad + bc),i \ &= (a - bi),(c - di) \ &= \overline{(a + bi)} ,\cdot, \overline{(c + di)} \end{aligned}$$

3. The Geometry of Complex Numbers
#

Img

3.2 The modulus of a Complex Number
#

Definition of modulus of Complex Number
#

Img

Proposition 3.1 Complex Number’s Conjugate & Modulus
#

Proof
#

Proposition 3.2 Commutative Property
#

Proposition 3.3 Inverse
#

3.3 The Argument of a Complex Number 复数的辐角
#

Img

3.4 The polar-coordinate representation of complex numbers.
#

Img

Proposition 3.5 Argument’s Associative Law
#

Proposition 3.6
#

  1. 会将w的模(大小)按\(|z|\)进行伸缩(即缩小或放大)
  2. 会将w的辐角(方向角)按\(\text{arg}(z)\)旋转

3.5 Exponential Notation Euler’s formula 欧拉公式
#

Proof
#

Proposition 3.7
#

Proposition 3.8
#

Proof
#

4. Roots of polynomials
#

4.1 The fundamental theorem of algebra
#

Propisition 4.1
#

Proposition 4.2
#

如果 P(z)P(z) 是一个次数\(n \geq 1\)且具有复系数的多项式,那么:

4.2 Polynomials with real coefficients
#

Proposition 4.3
#

Proof
#

Proposition 4.4
#

Proposition 4.5
#

4.3 Square roots and quadratic equations
#

Propposition 4.6
#

Proof
#

Proposition 4.7
#

Example 4.3
#

$$z^2 + (1 - 2i)z - 2i = 0$$

4.4 The nth roots of a complex number
#

Proposition 4.8
#

Proof
#