Skip to main content
  1. Docs/
  2. Dynamics/

DYN 3. Projectile Motion Edited

·322 words
Docs DYN
Table of Contents

Last Edit: 3/24/25

Assumptions
#

  • 斜抛运动其实就是在分析物体在两个自由度上的运动
  • 现在为了简化问题,做出以下假设,忽略空气阻力,地球自转,并令重力为常数

Velocity
#

  • 于是有以下两个方向的初速度为
Axis Initial Velocity Acceleration
x \(v_0 \cos \theta\) 0
y \(v_0 \sin \theta\) \(\downarrow g, , -g \uparrow\)

image.png

  • 总结便可以得出以下表格
Axis Velocity (\(v = v_0 + at\)) Position (\(s = s_0 + v_0t + \frac{1}{2}at^2\)) No “t” (\(v^2 = v_0^2 + 2a\Delta s)\)
x \(v_x = v_0 \cos \theta\) \(x = x_0 + (v_0 \cos \theta)t\) N/A
y \(v_y = v_0 \sin \theta - gt\) \(y = y_0 + (v_0 \sin \theta)t - \frac{1}{2}gt^2\) \(v_y^2 = (v_0 \sin \theta)^2 - 2g\Delta y\)
  • 可以发现之所以x的第三列为 N/A 是因为 x 方向的加速度为零

Maximum Height
#

  • 通过分析这里的公式就可以得出一些二级结论
  • 物体在 Projectile Motion 中到达最高点后的Velocity会降到0
  • 到达这一点的时间可以通过 \(0=v_y-gt\) 得到,有

$$ t=\frac{v_y}{g} $$

  • 其高度则是根据 \(v^2 = v_0^2 + 2a\Delta s\) 解得

$$ \Delta y = \frac{v_{y0}^2}{2g} $$

ex. Messi kicks the ball
#

image.png
image.png

ex. Snowmobile
#

Snowmobile is going 15 𝑚/𝑠 at point A. Find: The horizontal distance it travels (𝑅) and the time (𝑡) in the air

image.png

image.png

Related

DYN 2. Plane Curvilinear Motion and Rectangular Coordinate Edited
·658 words
Docs DYN
DYN 1. Rectilinear Motion Edited
·776 words
Docs DYN
DYN 4. N-T Coordinates Edited
·623 words
Docs DYN
EF 1. Coulomb's Law Edited
·2085 words
Docs EF
EF 2. Electric Field Edited
·760 words
Docs EF
EF 10. Nodal and Loop Analysis
·850 words
Docs EF