Skip to main content
  1. Docs/
  2. Calculus/

Calculus A1. Polynomial Interpolation

·721 words
Docs Cal
Table of Contents

Last Edit: 1/13/25

Polynomial Interpolation
#

  • 如果想要找一个Polynomial,其穿过两个Point,很简单的做法就是建立$P(x)=ax+b$的多项式
  • 但是如果问题变成了三个点甚至更多,问题的复杂度就会上升很多,于是需要考虑另一种做法
  • 对于点$(-1,-1),(1,3),(2,-2)$我们需要找到一个Polynomial穿过这三个点,可以先写出三个Quadratic Polynomial $$L_1(x) := \begin{cases} 1, & \text{if } x = -1 \ 0, & \text{if } x = 1 \ 0, & \text{if } x = 2, \end{cases}

L_2(x) := \begin{cases} 0, & \text{if } x = -1 \ 1, & \text{if } x = 1 \ 0, & \text{if } x = 2, \end{cases}

L_3(x) := \begin{cases} 0, & \text{if } x = -1 \ 0, & \text{if } x = 1 \ 1, & \text{if } x = 2. \end{cases} $$

  • 之后再令$P_2(x)=−1L_1(x) + 3L_2(x) − 2L_3(x)$
  • 分别查看三个点的值可以发现 $$P_2(-1) = -1L_1(-1) + 3L_2(-1) - 2L_3(-1) \ = -1(1) + 3(0) - 2(0) \ = -1$$ $$P_2(1) = -1L_1(1) + 3L_2(1) - 2L_3(1) \ = -1(0) + 3(1) - 2(0) \ = 3$$ $$ P_2(2) = -1L_1(2) + 3L_2(2) - 2L_3(2) \ = -1(0) + 3(0) - 2(1) \ = -2$$
  • 可以发现这样构建的Polynomial是符合要求的,那么问题就变成了如何构建这三个Quadratic Polynomial
  • 已知$L_1(x)$有两个Roots,分别为$x=1$和$x=2$,并且因为$L_1(-1)=1$所以有 $$L_1(-1)=C(-1-1)(-1-2)=1\Rightarrow C=\frac{1}{(-1-1)(-1-2)}$$
  • 同理对于$L_2$和$L_3$来说有 $$P_2(x) = -1 \frac{(x - 1)(x - 2)}{(-1 - 1)(-1 - 2)} + 3 \frac{(x + 1)(x - 2)}{(1 + 1)(1 - 2)} - 2 \frac{(x + 1)(x - 1)}{(2 + 1)(2 - 1)} $$
  • 这就是Lagrange Interpolation 拉格朗日插值法

ex.
#

  • 将Lagrange Interpolation推广到四个点上,有 $$L_1(x) := \begin{cases} 1, & \text{if } x = x_1 \ 0, & \text{if } x = x_2 \ 0, & \text{if } x = x_3 \ 0, & \text{if } x = x_4, \end{cases}

L_2(x) := \begin{cases} 0, & \text{if } x = x_1 \ 1, & \text{if } x = x_2 \ 0, & \text{if } x = x_3 \ 0, & \text{if } x = x_4, \end{cases}

L_3(x) := \begin{cases} 0, & \text{if } x = x_1 \ 0, & \text{if } x = x_2 \ 1, & \text{if } x = x_3 \ 0, & \text{if } x = x_4, \end{cases}

L_4(x) := \begin{cases} 0, & \text{if } x = x_1 \ 0, & \text{if } x = x_2 \ 0, & \text{if } x = x_3 \ 1, & \text{if } x = x_4. \end{cases}$$

  • 其最终的Polynomial将会长这样 $$P_3(x) = y_1 \frac{(x-x_2)(x-x_3)(x-x_4)}{(x_1-x_2)(x_1-x_3)(x_1-x_4)} + y_2 \frac{(x-x_1)(x-x_3)(x-x_4)}{(x_2-x_1)(x_2-x_3)(x_2-x_4)} + y_3 \frac{(x-x_1)(x-x_2)(x-x_4)}{(x_3-x_1)(x_3-x_2)(x_3-x_4)} + y_4 \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_4-x_1)(x_4-x_2)(x_4-x_3)}$$

Related

LPC 2. Data & Operations
·4186 words
Docs LPC
LPC 3. Decision Making Statements
·1833 words
Docs LPC
LPC 1. Intro to Programming Computers
·1178 words
Docs LPC
LA 8. Diagonalization and Eigenvalues
·3669 words
Docs LA
MCMS 5. Further On Stress Strain
·2867 words
ECMS Chemistry Docs
LA 1. Vector Line & Plane
·2559 words
Docs LA