Skip to main content
  1. Docs/
  2. Calculus/

Calculus 10. Parametric Equations and Polar Coordinates

·809 words
Calculus
Table of Contents

Last Edit: 1/8/25

10.1 Parametric Equations
#

  • If x and y are continuous functions of t on an interval I, then the equations are called parametric equations and t is called the parameter $$x=x(t) andy=y(t)$$

Eliminating the Parameter 化简
#

  • 通过关系式直接得到x和y之间的函数

ex.
#

$$x(t) = t^2 - 3, \quad y(t) = 2t + 1, \quad -2 \leq t \leq 3.$$

  • 从第二个Equation中提出\(t = \frac{y - 1}{2}\)后带入 $$x = \left(\frac{y - 1}{2}\right)^2 - 3 \ = \frac{y^2 - 2y + 1}{4} - 3 \ = \frac{y^2 - 2y - 11}{4}$$

Use Trigonometrey to Eliminate Parameter
#

  • 通过一些等式建立x和y之间的关系
  • 例如\(\cos^2x+\sin^2 x=1\)

ex.
#

  • 有\(x = 3 \cos \theta \quad \text{and} \quad y = 4 \sin \theta, \quad 0 \leq \theta \leq 2\pi\)
  • 通过\(cos \theta=\frac{x}{3},sin\theta=\frac{y}{4}\)替换原式,便有\((\frac{x}{3})^2+(\frac{y}{4})^2=1\)

10.2 Calculus of Parametric Curves
#

Derivatives of Parametric Equations
#

  • If a smooth curve C is given by the equations $$x = f(t) \quad \text{and} \quad y = g(t)$$
  • then the slope of C at (x, y) is $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \quad \frac{dx}{dt} \neq 0 $$

Arc Length of a Parametric Curve
#

  • 普通的Arc Length公式为\(\int^b_a\sqrt{1+[f’(x)]^2}dx\)
  • 将Parametric Curve的Derivative带入,得到 $$\int^b_a\sqrt{1+(\frac{dy/dt}{dx/dt})^2}dx=\int^b_a\sqrt{\frac{(dx/dt)^2+(dy/dt)^2}{(dx/dt)^2}}\frac{dx}{dt}dt$$
  • 也就是 $$=\int^b_a\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt=\int^b_a\sqrt{[f’(x)]^2+[g’(t)]^2}dt$$

10.3 Polar Coordinates 极坐标

Img

  • Polar Coordinates,一个新的坐标系,通过Radius和于Polar Axis的Directed Angle来表示点在坐标系中的位置

Converting Points between Coordinate Systems
#

  • 想要把Cartesian Coordinates转换为Polar Coordinates,只需要找到\(r=\sqrt{x^2+y^2}\) 和 \(\tan^{-1}\frac{y}{x}\)便可
  • 而Polar 到 Cartesian的转换则是通过公式\(x=r\cos\theta , y=r\sin\theta\)得到

10.4 Area and Arc Length in Polar Coordinates
#

Slope of Polar Curve
#

  • 对于Polar Coodinates来说,其Derivative可以通过一个简单的Chain Rule得到 $$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{f(\theta) \cos \theta + f’(\theta) \sin \theta}{-f(\theta) \sin \theta + f’(\theta) \cos \theta}$$

Areas of Regions Bounded by Polar Curves
#

  • 在之前都是采用多边形来近似面积,而在Polar Region中,采用了扇形的来近似

Img

$$A = \lim_{n \to \infty} \frac{1}{2} \sum_{i=1}^{n} [f(\theta_i)]^2 \Delta \theta = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$

Related

LPC 1. Intro to Programming Computers
·1178 words
Docs LPC
LA 8. Diagonalization and Eigenvalues
·3669 words
Docs LA
MCMS 5. Further On Stress Strain
·2867 words
ECMS Chemistry Docs
LA 1. Vector Line & Plane
·2559 words
Docs LA